

School of Medicine

Engineering Endothelial Cells to Treat Pulmonary Arterial Hypertension

Heather Jackson-Pease, Anais Amaya Matthew Porteus CIRM, Stanford School of Medicine:Department of Pediatrics Porteus Lab

Figures provided by BioRender

Five Groups of Pulmonary Hypertension (PH)

Group 1 Group 2 Associated : 51%	Group 3	Group 4	Group 5
 Idiopathic PAH 44% Hereditary PAH 4% Drug induced PAH Connective tissue disease associated PAH (e.g. scleroderma) 67% Congenital heart disease associated PAH 12% Due to left hea disease Risk factors for type of PH incl coronary arter disease, hypertension, diabetes, high cholesterol etc 	rt • PH due to lung disease or hypoxia (low oxygen) • This can be caused by advanced lung disease including COPD, Interstitial lung diseases (e.g. IPF) or obstructive sleep apnoea	• Chronic thromboembolic pulmonary hypertension (CTEPH) is the most common cause of Group 4 PH.	• This is a 'miscellaneous' group that includes causes of PH that are unclear or have multiple mechanisms such as sarcoidosis.

The National Pulmonary Hypertension Unit(Dublin, Ireland)

PAH (WHO Group 1)

- PH due to Left Heart Disease (WHO Group 2)
- PH due to Chronic Lung Disease (WHO Group 3)
- CTEPH (WHO Group 4)
- PH due to unknown causes (WHO Group 5)

Misc.

Strange G, et al. Heart. 2012;98(24):1805-11.

Hereditary: BMPR2 gene→ maturation of bone and cartilage

Group 1: Pulmonary Arterial Hypertension(PAH)

- About 500-1000 new cases of PAH diagnosed each year in U.S.(ALA)
- ✤ 50-70 million people WW (APS)
- ✤ Life expectancy about 2-3 years without treatment
- Predominately effects women (3:1) of color ages 30-60
 - Ages of patients are generally lower when drug/toxin induced
- Characterized by blood vessels in the pulmonary artery being narrowed or destroyed
 - ✤ Increased pressure in artery
 - ✤ Weakening of right side of the heart
- Believed to be the result of injury to the cells that line the blood vessels (endothelial cells) of the lungs

Endothelial Nitric Oxide Synthase leads to the production of Nitric Oxide(NO) & Vascular Endothelial Growth Factor promotes reendothelialization

- NO diffuses into smooth muscle, activates guanylyl cyclase, and leads to vasodilation(Dr. Murad, 1977)
 - ✤ NO has a short half-life of 1-10 seconds
 - Quickly oxidizes to nitrite and then nitrate
- VEGF A, has shown to promote activation of angiogenic signaling pathways(Karanysheva, A.F., 2008) and reendothelialization (Chang, et al, 2018)
- The most abundant isoform of VEGF A, VEGFA^{165a} stimulates proliferation and survival of ECs (Peiris-Pages, M., et al, 2012)

Current treatment for PAH target vasodilation pathways

Adapted from: Humbert et al (2014)

Shortcomings of current treatments leaves room for improvement

The plan: Engraft edited ECs on stent, implant stent in PA

model

Milestone 1: Conduct baseline experiments on HUVECs

- Nitric Oxide Assay
- ✤ VE-Cadherin and VWF Staining
- VWF Optimization Staining
- Determining most effective AAV serotype for ECs
- Editing HUVECs using W3 and sgRNA11
- Editing HUVECs using different guides, MOIs, AZD, and cell count

3

Buffer

wasn

Milestone 1: Nitric Oxide Assay Fluorometric & Colorimetric

Colorimetric	Fluorometric
0.884 nmol/well	0.41 μM
	0.48 μM

School of Medicine

Milestone 1: Antibody Staining: VE-Cadherin and VWF in HUVECs

VE-Cadherin

A02 A01 A03 Stained A04 Unstained Stained 🗧 Gate: P3 Gate: P3 Gate: P3 Unstained Gate: P3 ŧ ŧ 9 M3 2.3% MЗ M3 1.6% M3 32.3% 57.9% 8 8 8 8 Count 20 Count 10 20 8 8 Count Count 2 9 a ο. ο. ο. 104 105 108 107.2 10³ 10⁴ FITC-A 104 102 103 102 103 105 108 107.2 ±0³ Que .0 ±01 10⁰ 101 0., 102 105 ±07.2 1.01 ±0² ___6 ...t ±0⁴ <u>ۍ</u> ±07.2 FITC-A FITC-A FITC-A

VWF

Milestone 1: VWF Optimization Staining

Condition	Primary Antibody	Secondary Antibody
Control	0	0
1	1:50	1:200
2	1:25	1:200
3	1:50	1:100
4	1:25	1:100

Milestone 1: Editing HUVECs PCR and Indel Frequency Results

Milestone 1: Editing HUVECs sgRNA11 has higher indel frequency than W3 and less editing events

<u>W3</u>

POWERED BY PSYNIHEGU ICE

RELATIVE CONTRIBUTION OF EACH SEQUENCE (NORMALIZED)

IN	DEL	CONTRIBU	JTION 🗸	SEQU	ENC	E																																							
+	0	_	20%	ΤTG	A T	тт	тт	TG	GC	A	GG	G C	тс	co	G A	TG	т	A T	AA	TA	AT	Т	A	TG	тс	AT	ΓA	G A	тт	G	G A	СТ	TG	AC	A	ст	TG	A	T A	A 1	С	CA	т	СТ	T G
	+1	-	19%	ттg	A T	тт	тт	ΤG	G C	A	GG	G C	тс	co	G A	ΤG	N	ГА	T A	A T	AA	ΤI	G	A T	G T	CA	A T	A G	A T	т	GG	A C	тт	G A	C	A C	тт	G	A T	AA	т	сс	A	гс	тт
	-1	-	17%	ΤTG	A T	тт	тт	ΤG	G C	A (GG	G C	т	co	G A	ΤG	- /	A T	A A	TA	AI	т	A 6	T G	тс	A 1	F A	G A	тт	G	G A	СТ	T G	A C	A	СТ	ΤG	A	T A	A 1	С	C A	т	СТ	T G
	-14		7%	ΤTG	A T	тт	тт	TG	G C	A	GG	G C	тс	co	G A	т -								G	тс	A T	Γ A	G A	тт	G	G A	Т	T G	A C	A (СТ	T G	A -	Γ A	A T	С	C A	т	т	T G
	-4	•	5%	ΤTG	A T	тт	тт	ΤG	G C	A	GG	G C	т	с -			Т	A T	AA	TA	AT	TO	G A	T G	тс	A 1	F A	G A	тт	G	G A	СТ	T G	AC	A	СТ	ΤG	A	ΤA	A 1	С	C A	т	СТ	T G
Ō	-14	1.00	2%	ΤTG	ΑΤ	тт	тт	TG	GC	A	GG	G C	ТС	CO	-								A	T G	ТС	A T	A	G A	тт	G	G A	Т	T G	A C	A (СТ	T G	Α.	ГА	A T	С	C A	Т	т	T G
	-14	1	1%	ΤTG	ΑΤ	тт	тт	ΤG	GC	A	GG	G C	тс	CO	G A	TG							-		ТС	AT	Γ A	G A	тт	G	G A	Т	TG	AC	A (СТ	ΤG	A	Γ A	A T	С	C A	Т	т	T G

Milestone 1: Addition of AZD and Various MOI of AAV6

Milestone 1: Determination of most Effective AAV Serotype for Gene Integration

30

Experiment 1: Various Serotypes and MOIs Percent of GFP Expression for Various AAV Serotypes at 5k and 50k MOI 80 70 Percent of cells expressing GFP 07 08 07 09 09 5k 50k 10 \cap Ctrl AAV9 AAV 5a AAV 5b AAV rh32 AAV1 AAV anc80 AAV 6 AAV 2

Experiment 2: Top Three AAVs with or without Electroporation

Percent of GFP Expression for Various Serotypes of AAV in HUVECs

Milestone 1: Using same amount of Cas9+sgRNA for 100k and 1M Cells

Ladder Ctrl GFP 100K 1M W

Milestone 2: Isolating and Culturing BOECs

- Should start to see BOEC colonies between 14-28 days
- We're observing some cells, but they are becoming confluent further along after isolation than would be expected of ECs
- Resemble the same morphology that we see in HUVECs

Milestone 2: Confirming Identity of Suspected BOECs

VE-Cadherin

Looking Towards the Future

Milestone 3: eNOS Expression in Endothelial Cells

Summary

- ✤ Nitric Oxide concentrations in the HUVECs is in the detectable range
- ***** VE-Cadherin stains exclusively for ECs, VWF can be used as second confirmation
- Increasing the concentration of the secondary antibody, in VWF staining, increases the percent of endothelial cells that are stained
- * AAV2, AAVanc80, and AAV6 are viable options for gene integration in ECs
 - ✤ AAV2 has the highest percent of gene integration
- **sgRNA11** has a higher indel frequency than W3 and fewer editing events
- ***** Using AZD and higher MOI of AAV6 produces higher frequency of targeted allele editing in ECs
- Editing with the same volume of RNP for 100k and 1M cells shows that 100K cells is optimal for 1uL Cas9/0.6uL guide
- ***** Some confirmation that the cells we isolated are EC's
- There are a few options for stents and mouse models, yet to be determined which is overall better for this project

Acknowledgments

Anais Amaya Mara Pavel-Dinu Sridhar Selvaraj Amanda Dudek Aluya Oseghale Liwen Xu Suzette Shipp Alvaro Amorin William Feist Kiran Majeti

Hana Ghanim

Isabel Ojeda-Perez Jessica Hamptom

Sofia Luna

Freja Ekman

Aadit Shah

Nicole Johnston

Vrishti Sinha

Elaine Hernandez Gonzalez

Ginger Exley

Big thank you to Matthew Porteus And Loan Nyugen

Cal Poly Humboldt Jenny Cappuccio Amy Sprowles Brigette Blackman

CALIFORNIA'J JTEM CELL AGENCY

Citations

CDC. 2019 Dec 3. Pulmonary Hypertension | cdc.gov. Centers for Disease Control and Prevention. https://www.cdc.gov/heartdisease/pulmonary hypertension.htm.

NPHU. 2022. » What is Pulmonary Hypertension? wwwpulmonaryhypertensionie. <u>https://www.pulmonaryhypertension.ie/about-us/what-is-pulmonary-hypertension</u>.

Strange G, Playford D, Stewart S, Deague JA, Nelson H, Kent A, Gabbay E. 2012. Pulmonary hypertension: prevalence and mortality in the Armadale echocardiography cohort. Heart. 98(24):1805–1811. doi:https://doi.org/10.1136/heartjnl-2012-301992. <u>https://heart.bmj.com/content/98/24/1805</u>.

Adams R. 2012 Feb 24. Living With Pulmonary Arterial Hypertension. The Ledger. <u>https://www.theledger.com/story/news/2012/02/25/living-with-pulmonary-arterial-hypertension/26473728007/</u>.

Krump-Konvalinkova V, Bittinger F, Unger RE, Peters K, Lehr HA, Kirkpatrick CJ. 2001. Generation of human pulmonary microvascular endothelial cell lines. Laboratory Investigation; a Journal of Technical Methods and Pathology. 81(12):1717–1727. doi:https://doi.org/10.1038/labinvest.3780385. https://pubmed.ncbi.nlm.nih.gov/11742042/.

Liang B, Wang X, Zhang N, Yang H, Bai R, Liu M, Bian Y, Xiao C, Yang Z. 2015. Angiotensin-(1-7) Attenuates Angiotensin II-Induced ICAM-1, VCAM-1, and MCP-1 Expression via the MAS Receptor Through Suppression of P38 and NF- κ B Pathways in HUVECs. Cellular Physiology and Biochemistry. 35(6):2472–2482. doi:https://doi.org/10.1159/000374047. https://www.karger.com/Article/FullText/374047.

Yang B, Cai B, Deng P, Wu X, Guan Y, Zhang B, Cai W, Schaper J, Schaper W. 2015. Nitric Oxide Increases Arterial Endotheial Permeability through Mediating VE-Cadherin Expression during Arteriogenesis. Schirmer SH, editor. PLOS ONE. 10(7):e0127931. doi:https://doi.org/10.1371/journal.pone.0127931.

Badlam JB, Badesch DB, Austin ED, Benza RL, Chung WK, Farber HW, Feldkircher K, Frost AE, Poms AD, Lutz KA, et al. 2021. United States Pulmonary Hypertension Scientific Registry: Baseline Characteristics. Chest. 159(1):311–327. doi:https://doi.org/10.1016/j.chest.2020.07.088. <u>https://pubmed.ncbi.nlm.nih.gov/32858008/</u>.

Pugh ME, Robbins IM, Rice TW, West J, Newman JH, Hemnes AR. 2011. Unrecognized glucose intolerance is common in pulmonary arterial hypertension. The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart Transplantation. 30(8):904–911. doi:https://doi.org/10.1016/j.healun.2011.02.016. https://pubmed.ncbi.nlm.nih.gov/21493097/.

Holmes K, Roberts OL, Thomas AM, Cross MJ. 2007. Vascular endothelial growth factor receptor-2: Structure, function, intracellular signalling and therapeutic inhibition. Cellular Signalling. 19(10):2003–2012. doi:https://doi.org/10.1016/j.cellsig.2007.05.013. <u>https://www.sciencedirect.com/science/article/pii/S0898656807001532</u>.

Humbert M, Lau EMT, Montani D, Jaïs X, Sitbon O, Simonneau G. 2014. Advances in Therapeutic Interventions for Patients With Pulmonary Arterial Hypertension. Circulation. 130(24):2189–2208. doi:https://doi.org/10.1161/circulationaha.114.006974.

Alferiev IS, Hooshdaran B, Pressly BB, Zoltick PW, Stachelek SJ, Chorny M, Levy RJ, Fishbein I. 2022. Intraprocedural endothelial cell seeding of arterial stents via biotin/avidin targeting mitigates in-stent restenosis. Scientific Reports. 12(1):19212. doi:https://doi.org/10.1038/s41598-022-23820-7. https://www.nature.com/articles/s41598-022-23820-7.

Chang H-K, Kim P-H, Kim DW, Cho H-M, Jeong MJ, Kim DH, Joung YK, Lim KS, Kim HB, Lim HC, et al. 2018. Coronary stents with inducible VEGF/HGF-secreting UCB-MSCs reduced restenosis and increased re-endothelialization in a swine model. Experimental & Molecular Medicine. 50(9). doi:https://doi.org/10.1038/s12276-018-0143-9.

