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Representing mortality risk in mechanistic models 
 

Abstract. Mortality risk is a critical and complex component of individual fitness and 
individual-based ecology, especially when risk-avoidance behaviors are considered. 
Organisms are subject to multiple kinds of risk that can vary with habitat, time, individual 
state, individual activity and behavior, and population status. Yet risk is often represented 
very simply in models and there is little literature on practical ways to model its variation. In 
our experience, desirable characteristics of risk models include: (a) survival probability can 
vary with multiple variables of individuals, habitat, and other entities; (b) relations between 
survival and specific variables can be added or removed or modified without re-fitting the 
entire model; (c) relations between variables and survival can take different forms, including 
continuous and nonlinear functions and discrete values; (d) relations between variables and 
survival are easy to understand and fit to many kinds of data or assumptions; and (e) they can 
be calibrated by adjusting only one parameter. We review the terminology and conventions 
that ecologists often use to model risk, and provide a mathematical framework for modeling 
risk. For complex risks, we describe and illustrate a method with “survival increase 
functions” that each relate survival probability to one variable. These functions can have a 
different form for each variable and can each be based on different information. The multiple 
functions are combined into a single survival probability value that is easily calibrated. We 
discuss methods for evaluating survival increase functions, ranging from general field 
observations to controlled field experiments, knowledge and data on mechanisms driving 
survival, and even conceptual models of those mechanisms. This approach has proven 
practical for representing complex effects of multiple variables on survival probability in 
models that represent how individual behavior and fitness depend on risk. 

Introduction 

Importance of risk to individual-based ecology 
One of the greatest promises of individual-based ecology is the ability to incorporate more 
realistic mechanisms in our models, thereby making them more general and more capable. 
Mortality is, of course, an extremely important mechanism in ecology. Mortality is important 
not only because it is a fundamental driver of population dynamics but also because, as 
ecologists now widely acknowledge (e.g., Peacor and Werner 2001; Preisser et al. 2005; 
Verdolin 2006), it is a strong driver of behaviors that trade off risk and other elements of 
individual fitness such as growth and reproduction. The most general and noncontroversial 
“first-principles” assumptions we can base models on include that individual traits, including 
inherent behaviors, have evolved because they convey fitness, and that survival to 
reproduction is critical to fitness.  

Representing how mortality risks vary (over space or time, or among individuals) is 
important for at least two kinds of model. First are models of the effects of changes that 
strongly affect risk; examples include land use changes and reintroduction of predators (both 
illustrated by Ganz et al. 2024). Second are models that include risk-avoidance behavior. If 
we want models to implement the assumption that behavior acts to increase fitness by 
avoiding mortality, the models must represent variation in mortality risk: model individuals 
cannot reduce risk if risk is the same in all places and at all times. Further, risk needs to vary 
at spatial and temporal scales relevant to behavior. If we model how animals select among 
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habitat patches and how habitat selection varies seasonally, with patch selection dependent in 
part on predation risk, then we need to represent how risk varies among patch types and over 
seasons. If we want to model how animal behavior changes diurnally, then we need to 
represent how risk varies over the daily light cycle.  

To address such purposes, individual-based ecology has the challenge of developing methods 
for quantifying how risk varies and for representing that variation in our models. 

Conventional approaches to variation in risk 
How individual-based models (IBMs) can represent behavior as fitness-seeking tradeoffs 
among risk, growth, and other elements of fitness has been addressed to some extent (e.g., 
chapter 5 of Grimm and Railsback 2005; Railsback and Harvey 2020), but there is little 
existing literature on general, mechanistic models of how risk varies with characteristics of 
habitat, time, and the individuals at risk. To get a general idea of how IBMs typically 
represent risk, we reviewed the IBMs in three recent volumes (499-501) of the journal 
Ecological Modelling, including the older models (published before 2009) described in the 
supplemental materials of Grimm et al. (2025). Of the 15 IBMs that included mortality, 
almost all represented multiple causes of mortality, e.g., unspecified “background” mortality 
and starvation when growth was low. However, only one (Anders et al. 2025) represented 
one cause of mortality that depended on multiple drivers: tree death from stress related to 
multiple climate variables, modeled via logistic regression on field data. We conclude that 
many IBMs represent mortality as multiple risks that each vary with a single variable, but few 
models explicitly represent how a risk such as predation depends on multiple variables. 

While little of it addresses general, mechanistic modeling, there is extensive empirical 
literature on spatial and temporal variation in predation mortality and risk, especially in 
wildlife and livestock subject to predation by large carnivores (reviewed, e.g., by Prugh et al. 
2019). Much of this literature uses statistical methods such as logistic regression on habitat 
variables observed where predation did and did not occur, to model how the probability of 
mortality varies (reviewed by Miller 2015). Other observational approaches are to (a) use 
tracking data on prey individuals and estimates of when they were killed to estimate 
predation risk in different habitat types (Ganz et al. 2024), (b) track the predators and observe 
predation events (Gervasi et al. 2013), and (c) develop resource selection functions for both 
predators and prey to estimate how the probability of predators encountering prey varies with 
habitat (Hebblewhite et al. 2005; Hebblewhite and Merrill 2007). 

Such observational study methods and literature have limited value for the individual-based 
modeler. Studies that examine only mortality events cannot distinguish risk (as we define it 
below) from the confounding effect of prey exposure (the number of prey killed by predators 
is a function of both risk and number of prey). The literature and methods are generally 
limited to large terrestrial predators and prey, which are particularly easy to observe. Because 
these studies are purely empirical, their results are of questionable value for modeling other 
systems or novel future conditions. Observational studies also tend to have limited temporal 
resolution because it is generally difficult to determine precisely (e.g., between day, night, or 
twilight) when a predation event occurred. And these studies are of course expensive and 
time-consuming. However, observational studies provide valuable clues about general 
mechanisms (e.g., differences between wolves and cougars in predation success in dense vs. 
open habitat, and in willingness to hunt near humans; Atwood et al. 2009; Ganz et al. 2024). 



4 
 

Objectives and scope 
Our objectives are to review concepts and mathematical methods that can be used to model 
how mortality risks vary over multiple dimensions in IBMs and other mechanistic ecological 
models. We specifically address models that treat one or more risks as explicit functions of 
multuiple characteristics of habitat, individuals, or time. However, we do not address models 
in which mortality emerges from direct interactions among individuals, e.g., by representing 
adaptive predators or contagious disease spread. 

We also discuss ways that such methods can be supported by multiple kinds of information, 
from natural history knowledge, mechanistic understanding, and empirical experiments of 
several kinds. Our methods are especially applicable to systems and species for which 
reliable empirical information on risks is difficult to obtain, and for models that benefit from 
being more mechanistic and general because those characteristics make them useful for 
predicting responses to novel conditions under which strictly empirical representation of risk 
would be unreliable. 

We focus, but not exclusively, on predation risk to mobile animals that use risk avoidance 
behaviors such as selecting when and where to feed. Our experience is primarily with 
modeling salmonid fish, specifically the “InSTREAM” family of IBMs for predicting effects 
of river management on trout and salmon populations (e.g., Railsback and Harvey 2002; 
Railsback et al. 2023). These models represent multiple kinds of mortality that are affected by 
managed variables such as flow and temperature. Simulated risks include two kinds of 
predation, starvation and disease, and extreme temperatures. Reliably modeling how such 
risks vary with habitat and among individuals is essential for understanding how management 
affects individual behavior and fitness and, therefore, population dynamics. InSTREAM 
assumes individual fish select when and where to feed (or hide) as an adaptive tradeoff 
between risk and growth (Railsback et al. 2020). However, the methods we present are also 
applicable to other kinds of risk such as disease, human harvest, and extreme weather or 
habitat conditions. The methods also seem useful for modeling such risks to plants as 
herbivory, lack of resources (water, light, nutrients), pest infestation, and disease. 

Concepts 

We begin by reviewing concepts we find important for understanding and modeling risk. 

Terminology and mathematical conventions 
Traditional equation-based ecological models (e.g., the Lotka-Volterra equations) represent 
mortality via a rate parameter d, the fraction of a population that dies within a specified unit 
of time (Haefner 2012). However, in an IBM mortality is not a population-level rate but an 
individual-level event: every time step, each individual either survives or dies. A very simple 
way to model mortality as an event is using the variable “risk” R as a probability of mortality 
within a specific time period. We can set the value of R by assuming it equal to an observed 
mortality rate, but it is important to remember that when we model mortality of individuals in 
this way, R is a probability, not a rate.  

(Here, we generally assume 1 day as the time period. We also use “risk” as a general term for 
mechanisms that could cause mortality, e.g., the risk of heart attack. The context should make 
it clear when “risk” is used in this general sense or specifically as a probability of death, R.) 
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The term “mortality” also has general meanings—the phenomenon or rate of death among 
individuals—and a specific meaning, the death of an individual. Mortality of an individual is 
typically represented in IBMs as an event that occurs randomly with probability R of 
occurring within one time period.  

Studies and models that explicitly represent both predators and prey often follow the 
convention (e.g., Holling 1959) of decomposing R into separate probabilities of (a) a prey 
individual encountering a predator and (b) the predator successfully killing the prey when an 
encounter occurs. Similar decomposition can be applicable to other kinds of mortality; 
disease, for example, is often represented via separate probabilities of exposure to, infection 
by, and succumbing to a pathogen. While such decomposition is helpful for understanding 
and quantifying some risks, here we do not include it when discussing predation because it is 
unnecessary when predators are not represented as explicit individuals.  

Models can be simpler to describe and implement when mortality is represented via survival 
S, the probability of surviving a specific time period, so S = 1.0 – R. Under the very common 
(yet often unstated) assumption that mortality risk in any time period is independent of risk in 
adjacent periods, the probability of surviving any t time periods is simply St, which is 
especially convenient for models with time steps of variable lengths. Our trout model 
simulates four time steps representing the light phases of each day (Railsback et al. 2021); the 
length t (fraction of 1 day) of each phase varies with date. On each time step we model 
survival of each kind of mortality as a daily probability SX, and then determine mortality each 
time step using SX

t as the probability of surviving.  

Modeling risk as a survival probability is also convenient because the probability of surviving 
multiple, independent, kinds of mortality (discussed below) is calculated simply as the 
product of the survival probabilities for each mortality type. 

The importance of time in understanding risk 
Even though we typically evaluate risk and survival as daily probabilities, understanding and 
making good modeling decisions requires thinking about risk over longer time periods. 
Seemingly minor differences in daily survival result in large differences over meaningful 
future periods.  

The widespread misuse of the so-called “µ/f rule” (or “µ/g”) provides a good example of the 
importance of time for understanding risk. Gilliam and Fraser (1987) derived, for a highly 
simplified system, that long-term fitness an individual is maximized by selecting the behavior 
that minimizes the ratio of risk to food intake. Presumably because of its simplicity, this 
“rule” has been used to represent tradeoff decisions in a variety of models. When we think of 
daily probabilities and rates, the “rule” may seem reasonable—a small increase in risk, say 
10%, is the price for a corresponding increase in food intake. However, when we think about 
future survival this tradeoff seems less reasonable. If risk is low, e.g., daily S is 0.998 so the 
probability of surviving for 30 days is 94%, a 10% increase in daily risk reduces the 
probability of surviving for a year by only 7%. But if risk is already high, e.g., S = 0.98, a 
10% increase in risk reduces the probability of surviving for a year by 50%. The tradeoff of 
10% gain in food for 10% increase in risk is a bad one when risk is already high and behavior 
should instead emphasize reducing risk. Looking at the long-term consequences of changes in 
risk makes it clear that the “µ/f rule” cannot provide good tradeoff decisions across wide 
ranges of risk. 
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When estimating survival parameters for models, it helps to think about survival over a 
meaningful time period and then calculate the corresponding daily probabilities. For example, 
we might estimate that an animal in a particularly risky habitat has a 20% chance of surviving 
for a month. The corresponding daily survival is: 𝑆𝑆 = 0.2�1 30� � = 0.948. Another approach is 
to estimate a median survival time (tm) and calculate daily survival probability from it: 

𝑆𝑆 = 0.5�
1
𝑡𝑡𝑚𝑚� �. 

Perceived vs. unperceived risks 
In some models it is important to distinguish among risks that individuals do vs. do not 
perceive and respond to. Human harvest, vehicle collisions, disease, natural toxins, 
pollutants, and introduced predators are example risks that a modeler might assume animals 
are naïve about and do not avoid via behavior. Such risks can be represented by modeling 
them exactly as the other risks while assuming that the individuals do not consider them in 
risk-driven behaviors. For example, Ayllón et al. (2018) added angler harvest to a trout IBM 
in which individual trout select habitat to trade off growth and predation risk. The risk of 
mortality via angling was assumed to vary with trout size, season, and angling regulations, 
but that variation was not considered by model trout in their behavior.  

Axes of variation in risk 
Here we list some of the “dimensions” in which mortality risks can vary, ending with a 
summary of those dimensions in our salmonid models. These dimensions are variables or 
groups of variables that risks often vary over. 

Type of risk. Risk types can include predation (including multiple types of predator, as 
considered below), disease, extreme weather or other habitat conditions, starvation or 
dehydration, and human-induced risks such as harvest. 

Habitat. Many risks are affected by habitat conditions at various scales. For example, risk of 
wolf and cougar predation on ungulates can differ between open and forested areas (Atwood 
et al. 2009; Gervasi et al. 2013), and the availability of escape and concealment cover is 
important for many prey species. Some risks, such as extreme temperature, can be driven 
entirely by habitat variables. 

Time. Some risks vary over time cycles from daily to seasonal and even multi-year. 
Temporal variation in risks is generally driven by lower-level mechanisms such as predator 
physiology and life cycles, and daily and seasonal light cycles, but it can be convenient to 
model such variation as time-driven.  

Individual state. Risks commonly vary dramatically with characteristics of the model 
individuals. If classical ecological models address variation in risk, they typically do so by 
assuming predation risk decreases as prey size increases. In many real systems, however, the 
kinds of predators and risk change as prey proceed through their life cycles, and the relations 
between size and risk may not be simple. Often, different life stages are subject to quite 
different risks, in which case life stage can be the individual state variable with the most 
effect on risk.  

Individual activity or behavior. Models that represent risk-avoidance behavior must 
represent the effects of behavior on risk. For example, a model that represents how 
individuals choose between feeding during day vs. night as an adaptive tradeoff between risk 
and food intake must represent how risk differs between feeding and alternative activities, 
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during both day and night. (Ellsworth et al. 2024 provides an example empirical study of 
activity effects, showing that deer survival varied with the percentage of time devoted to 
vigilance behavior.) 

Population status. Some risks can be subject to direct feedbacks from the local or global 
population status. Mechanisms of such feedbacks include (1) competition for predator 
avoidance habitat (hiding places), (2) attraction or prey switching by predators, and (3) 
cannibalism. 

We illustrate these axes of variation in risk via Table 1, which lists the types of risk 
represented in our trout model for its two distinct life stages: eggs, and swimming juvenile 
and adult trout. We list the dimensions that each type of risk varies across and the variables 
used to represent that variation. The abundant literature on stream salmonid ecology provides 
empirical evidence for how each risk varies with each variable. 

A mathematical framework for modeling risk variation 

In this section we present one general framework for modeling variation in risk. It includes 
the steps of (1) identifying types of risk; (2) for each type, representing how survival depends 
on each of multiple variables; and (3) combining the effects of multiple variables into one 
survival probability value.  

This framework differs from conventional approaches by letting us develop models of risk 
that are realistically complex, general instead of specific to a site or time, and supported by 
multiple kinds of information.  

Step 1: Select types of risk 
The first step is determining which types of risk to model separately. We assume that the 
modeler has carefully determined what risks need to be in a model to meet its intended 
purpose. “Pattern-oriented modeling” is a powerful strategy for doing so, thoroughly 
illustrated by Grimm and Railsback (2005, 2012). As Table 1 illustrates, we need to model 
risks separately if they are driven by different variables (e.g., thermal stress is driven by 
temperature while starvation and disease are driven by an individual’s weight relative to its 
length), or if they are driven by the same variables but in different directions (e.g., increasing 
depth makes a small trout less vulnerable to terrestrial predators but more vulnerable to fish 
predators). Another reason to separate risks into different types is to allow model results to 
indicate how much mortality was caused by each risk: if we want to observe how many 
simulated elk are killed by wolves vs. cougars, then we need to model these two predators 
separately. 

There are of course costs of using more types of risk: more assumptions and parameters, and 
more computations. While traditional modelers associate more parameters with higher 
uncertainty, a more-resolved representation of risk could reduce uncertainty by supporting 
more realistic behavior and results and by making more empirical evidence useful for 
representing risk. 
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Table 1. Axes of risk variation in the trout model of Railsback et al. (2023). For each of the model’s two life 
stages, the types of risk simulated and the variables causing variation in risk are identified. 

Life stage Type of risk Risk dimensions and variables 

Eggs Thermal stress and disease Habitat: temperature 

Dewatering Habitat: water depth 

Scour Habitat: river flow 

Superimposition (displacement by 
another spawning female) 

Habitat: area of spawning habitat 

Population status: number of spawners 

Juvenile and 
adult trout 

Thermal stress Habitat: temperature 

Stranding Habitat: water depth 

Starvation and disease Individual state: length, weight 

Predation by terrestrial animals Habitat: depth, velocity, light intensitya, 
distance to escape cover 

Time: light intensitya 

Individual state: length 

Individual activity: feeding vs. hiding 

Population status: availability of hiding 
cover 

Predation by fish Habitat: depth, temperature, light 
intensitya 

Time: light intensitya 

Individual state: length 

Individual activity: feeding vs. hiding 

Population status: density of piscivorous 
adult trout 

aLight intensity depends on time of day (dawn, day, dusk, night) and water depth. 

Step 2: Model survival of each risk  
Next, for each type of risk we need to model how survival probability S varies with one or 
more selected variables. Selecting the variables that drive each risk is similar and related to 
the process of selecting types of risk: variables should be included if they are considered 
essential to the model’s purpose or—via pattern-oriented modeling—essential for 
establishing the model’s credibility. But a variable might be considered essential for a model 
only because it is a critical driver of risk. 
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We discuss four ways to model how S depends on selected variables, but focus on the third 
and fourth, which we find most useful and novel. 

Statistical models 
Above (Conventional approaches to variation in risk) we identify examples of studies that 
modeled risk statistically, from several kinds of data, and discuss limitations of such 
approaches. Logistic regression is an appealing analysis framework because it estimates how 
the probability of an event—mortality—depends on multiple variables. However, modelers 
must be aware of differences between observed mortality rates and the survival probability 
variables in their models, especially for models containing risk-avoidance behavior. A model 
parameter representing S in the absence of risk avoidance behavior might be poorly estimated 
by data on actual mortality events, because actual mortality rates depend on prey abundance 
and behavior as well as the underlying survival probability. 

Estimated S for risk categories 
If there are few types of risk and they vary over few variables that can all be treated 
categorically, variation in S can be modeled as a matrix (Table 2). The matrix simply contains 
values of S for each combination of risk and variable value. Those values are essentially 
model parameters that must be evaluated by the modeler. In cases where sufficient 
observations are available, values for such survival parameters can be estimated via 
calibration. For example, the parameters in Table 2 could be calibrated by running an elk 
IBM iteratively to find the values that cause the model to best reproduce observed rates of 
predation by wolves and cougars in the two habitat types. 

Table 2. Example survival probability matrix. This simple example contains values of S for two kinds of risk 
(two predators) for prey (e.g., elk) in two habitat categories. 

Predator \ Habitat  Forest Meadow 

Wolf SW×F = 0.98 SW×M = 0.985 

Cougar SC×F = 0.99 SC×M = 0.95 

 

Continuous univariate models of S 
Risks assumed to depend on only one variable can be modeled as continuous functions that 
are either estimated from observations (as in Option 1) or designed by considering a variety 
of information. Such univariate functions could have any shape as long as they produce 
values between 0.0 and 1.0. We find two forms especially useful. 

Logistic curves are useful for representing nonlinear effects of a variable on survival (Fig. 1), 
for several reasons. First, they produce S values (the Y axis) ranging from 0.0 to 1.0 as the 
driving variable (X axis) varies over its entire range. They are also good at representing 
variables that produce high and low survival over wide ranges but sharp changes in survival 
between those ranges, which are quite common. Finally, when the right kind of observations 
are available, logistic curves are readily fit to data via logistic regression.  

  



10 
 

The equation for a logistic function is: 

Eq. 1:   𝑌𝑌 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑍𝑍)
1.0+𝑒𝑒𝑒𝑒𝑒𝑒(𝑍𝑍) 

where Z is a function of the X value: 

Eq. 2:  𝑍𝑍 = 𝐴𝐴 + (𝐵𝐵 × 𝑋𝑋). 

We find it convenient to define A and B, and therefore the shape of the logistic curve, via two 
model parameters, X0.1 and X0.9, which are the X values that produce Y values of 0.1 and 0.9 
(Fig. 1): B = -4.3944 / (X0.1 – X0.9) and A = -2.1972 – (B × X0.1). 

Because of the exp functions in equations 1 and 2, logistic functions are particularly 
vulnerable to variable overflow/underflow errors, which occur when the computer tries to 
produce a floating-point number larger or smaller than it can handle. The ranges of values 
causing errors depend on the software platform and sometimes the hardware. These errors 
can be avoided while providing the ability to evaluate logistic functions over wide ranges by 
adding code that sets Y to 1.0 when Z is greater than (e.g.) 35 (corresponding to Y = 
0.999999999999999 in 64-bit Excel) and to 0.0 when Z is less than -200 (corresponding to Y 
= 1.4E-87). 

 

Figure 1. Example logistic curve for S, representing trout survival of high-temperature stress. The round 
symbols represent observations from two laboratory studies of daily survival at temperatures of 24, 26, and 
28°C. The solid curve is a logistic function fit to the three observations, the model of daily S. The square 
symbols indicate the two parameters that define the logistic curve: X0.1 and X0.9 are 30.2 and 25.8°C. The dotted 
curve shows 10-day survival probability, equal to S10. 

Linear models of survival can be useful for chronic risks that persist over long times and 
cannot be alleviated rapidly. We use a linear model of how survival of starvation and disease 
depends on an individual’s energy reserves, in models in which energy reserves can change 
relatively little in one time step. If we define an individual variable energy-deficit as the 
fraction by which energy reserves are below those of a healthy individual (so, e.g., energy-
deficit = 0.2 means the individual’s energy is 20% below a healthy value), we can model the 
daily probability of not starving SS as linear: SS = 1.0 – (PS×energy-deficit) where PS is a 
parameter. Higher values of PS cause survival to decrease more rapidly as energy decreases. 

This kind of linear model produces a gradually decreasing probability of surviving prolonged 
periods of risk, e.g., when energy-deficit is constantly positive or increasing steadily due to 
constant weight loss (Fig. 2). 
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Figure 2. Example linear survival model, representing survival of starvation and disease SS as a function of 
energy deficit. The solid lines indicate the value of SS when PS is 0.2, when energy-deficit (left) is constant at 
0.2, and (right) starts at 0.0 and increases by 0.01 on each of 30 days. The dashed lines indicate the cumulative 
probability of surviving from day 0.  

Univariate models can be fit to data, including data from multiple sources, or even to a set of 
assumed values. Both linear and logistic functions can be fit via regression when suitable data 
are available, and via other techniques when data are not suitable for regression. For example, 
the logistic parameters X0.1 and X0.9 illustrated in Fig. 1 were fit to the three observed survival 
rates by using Excel’s Solver to minimize the sum of squared differences between observed 
and logistic-curve values.  

Multivariate models using “survival increase functions” 
None of the previous three methods for modeling S have all of the following characteristics 
that we find essential for modeling some kinds of risk, especially predation:  

• S can be modeled as a function of multiple variables (e.g., how a fish’s survival of 
predation by birds varies with fish size, depth, and light intensity); 

• Variables can be added to the model, or the relation between one variable and S can 
be modified, without having to re-fit or re-calibrate the entire model of S; 

• The relations between variables and S can take different forms, including continuous 
and discrete relations (e.g., the effects of fish size and depth on predation risk are 
continuous functions but the effect of light intensity is represented as discrete values 
for day, night, and twilight); 

• The value of S (i.e., the overall intensity of predation) can be calibrated easily by 
changing one parameter; and  

• The relations between each variable and S are easy to see, understand, and fit to data 
or assumptions.  

Simply fitting a multivariate equation for S would not provide these characteristics, so we 
developed the following method for modeling complex survival probabilities. It uses separate 
functions to represent the effect of each variable, with those effects then combined into a 
survival probability. As we discuss below, this approach assumes that variables driving S 
have independent effects. 

First, we identify a minimum survival probability Smin, which is a model parameter. The value 
of Smin represents survival under the least-safe conditions. 
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Second, we estimate “survival increase functions” (SIFs) for each variable (of model 
individuals, their habitat, or anything else) that affects survival. The SIFs produce “survival 
increase” values that range from 0.0 to 1.0 and represent the degree to which the variable 
increases survival probability: a SIF value of 0.0 provides no increase in survival and a value 
of 1.0 makes the individual completely safe (S = 1.0). However, SIFs have no other 
limitations on their form or origin: each can be a different function type developed from 
different information.  

The function types described above as univariate models of S are also useful as SIFs. Most of 
the SIFs we use are logistic curves, but we also use discrete functions to represent the effects 
of boolean (true-false) or categorical variables. For example, a SIF for use of hiding behavior 
can simply be: survival increase is 0.8 if the individual is hiding and 0.0 if not. A SIF for the 
effect of light on risk could simply be: survival increase is 0.0 in daytime, 0.6 during twilight, 
and 0.9 at night. 

A SIF can also be modified so that its value never reaches 1.0—no values of its variable 
make individuals completely safe. For example, a model of predation survival could include a 
variable representing vegetation density, and assume that survival probability is higher when 
vegetation is denser but some predators can be successful in even the densest vegetation. We 
can model that effect with a SIF that uses a logistic curve limited to values less than 1.0; such 
a curve only requires one additional parameter for the maximum survival increase, which all 
logistic curve values are multiplied by. 

Example SIFs (for the risk of terrestrial predators on trout) are illustrated in Fig. 3. The 
function for depth (panel A) is a logistic curve with X0.1 and X0.9 equal to 20 and 150 cm and 
a maximum value of 0.8: even trout in the deepest water are still vulnerable to diving 
predators such as otters and mergansers. Panel B is the length function, a logistic curve with 
X0.1 and X0.9 equal to 6 and 3 cm: very small trout are less visible and less valuable to 
predators, and the largest trout are still vulnerable to many predators. The light function is 
also a logistic curve, with X0.1 and X0.9 equal to 50 and -10 W/m2: only light levels at or below 
those characteristic of twilight reduce risk. The SIF for use of hiding cover (Panel D) is a 
discrete function: the survival increase value is 0.8 if a trout is hiding in concealment cover, 
and otherwise 0.0.  
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Figure 3. Example survival increase functions, for variables affecting terrestrial predation risk to trout in Table 
1. The round symbols indicate survival increase values at (A) depth = 100 cm (survival increase = 0.5), (B) 
length = 6 cm (0.1), and (C) light intensity = 20 W/m2 (0.5). Survival increase for fish hiding in concealment 
cover (D) is 0.8. 

The third step is to combine the SIFs into a value of S, using a method (Railsback et al., 
2023) in which each SIF contributes to reducing risk, so survival depends on all such 
variables. We model the interaction among SIF values (Fi where i indicates the functions, 
e.g., panels A-D in Fig. 3) by treating each Fi as a probability and calculating the joint 
probability of surviving all of them: 

Eq. 3:   𝑆𝑆 = 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 + (1 − 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚)�1 −∏ (1 − 𝐹𝐹𝑚𝑚)𝑚𝑚=𝑚𝑚
𝑚𝑚=1 �. 

Using the example survival increase values of Fig. 3, the product term in Eq. 3 is: (1–0.5)(1–
0.1)(1–0.5)(1–0.8) = 0.045. If Smin is 0.9, then S = 0.9955. Using this method, all the SIFs 
affect S but S is most sensitive to those with highest values (Fig. 4).  

One limitation of this method is that it does not represent interactions among the ecological 
factors affecting risk, e.g., the relation between depth and S depending on the value of light 
intensity. Such interactions could of course be added to a model, if the benefits of additional 
realism appear to outweigh the costs of substantial additional model complexity. 
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Figure 4. Example values of S from Eq. 3 when it includes the depth and light SIFs of Fig. 3. Smin is equal to 0.9. 
When light intensity is low, S is most sensitive to light; otherwise, S is most sensitive to depth. 

The final step in using this method is to estimate a value for Smin. We typically do this via 
calibration of the full model, searching for Smin values that produce reasonable model results. 
In many models, values of such survival parameters are found by fitting results to observed or 
assumed values of abundance or survival rate. However, models with tradeoff behaviors that 
relate (e.g.) growth to risk may also produce growth and size results that also respond 
strongly to Smin. For such models, it may be necessary to calibrate Smin simultaneously with 
parameters that drive growth. 

If a model includes more than one type of risk that uses this method for S (e.g., predation by 
terrestrial animals and fish, in Table 1), it may be possible to estimate each value of Smin 
relatively independently, if the two types of risks mainly affect different life stages or sizes of 
individuals. In our trout model, only juvenile trout are vulnerable to predation by other fish, 
so we can estimate Smin for that risk using observed juvenile survival rates, and then estimate 
Smin for terrestrial predators using overall population abundance. 

Informing survival increase functions 

The main advantages of the SIF approach is that it allows models of survival to make use of 
many kinds of data and mechanistic understanding. Each SIF can be based on the best 
information available for the relation it represents, whether that information is from field 
observations, controlled field or laboratory experiments, or only conceptual models. 
Observations of realized predation, such as those we reference in the Introduction, can inform 
estimates of habitat effects on predation risk after confounding factors are taken into account. 
However, here we focus on (a) field experiments designed to evaluate how risk varies along 
specific gradients and (b) use of information on mechanisms driving risk. 

Field observations that contrast survival across relevant gradients in habitat or in the 
characteristics of individuals—on spatial and temporal scales relevant to the model in use—
provide ideal information for building survival increase functions. Such observations are not 
common in the scientific literature, although the most feasible spatial and temporal scales for 
field experiments (e.g., a few square meters with trials of one day or less) are likely to align 
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with the scales of many individual-based models. However, animals generally do not 
voluntarily occupy high-risk habitat, so enclosures or tethering (e.g., Harvey and Nakamoto 
2013; Michel et al. 2020) may be necessary to obtain habitat-specific observations, and these 
methods should be applied with caution. For example, enclosures can affect relative risk 
across habitat gradients if they attract predators, while tethering experiments may better 
quantify predator encounter rates rather than risk per se, and also confound the effects of 
habitat or individual characteristics of prey (Baker and Waltham 2020). 

An alternative to directly measuring risk is to quantify the prey’s perception of risk or 
antipredator behavior. For a variety of reasons, the perception of, and responses to, predation 
risk by prey may not match actual risk (Gaynor et al. 2019). However, for individual-based 
modeling, the perception of risk may be as, or more, important information than actual risk 
by virtue of its influence on tradeoff behaviors (especially, habitat selection), while any 
mismatches between prey perception and reality may be negligible in the context of other 
uncertainties in model formulation. Prey responses to perceived predation risk are often 
complicated by trade-offs between risk and the need to obtain food. However, measurement 
of giving-up food densities (Brown 1988) exploits the risk:food trade-off to quantify the 
perception of risk. The general study design for this method is to create situations in various 
habitat types where a prey animal’s food availability—and therefore, inversely, the risk 
incurred to feed—can be controlled, and determining the food density at which the prey 
“gives up” because further feeding is not worth the perceived risk. This method has been 
widely applied in some taxa, but its application faces a variety of challenges (discussed, e.g., 
by Bedoya-Perez et al. 2013 and Menezes et al. 2014) and it is not applicable to all taxa and 
settings. Measurement of giving up densities may be particularly challenging on the spatial 
and temporal scales relevant to many individual-based models. Use of apparatus to directly 
measure giving-up harvest rate may work better at smaller spatial and temporal scales (e.g., 
Harvey and White 2017).  

In addition to direct measures of relative survival or the perception of risk by prey, we can 
use basic life history information and fundamental principles of physiology and ecology to 
identify specific mechanisms through which variables affect risk and then to evaluate SIFs 
that represent those mechanisms. This approach is highly dependent on the system being 
modeled; we illustrate it with examples from the trout predation relations identified in Table 
1. Railsback et al. (2023) based the SIF for temperature effect on fish predation in part on 
laboratory data on how metabolic rates of predator fish (and, presumably, their food intake) 
vary with temperature. The SIF for prey size effect on fish predation was based on the “gape 
limitation” concept because fish swallow their prey whole. The SIF for effect of light 
intensity on fish predation was based in part on literature on how fish vision varies with light 
intensity but also the understanding that bigger fish have bigger eyes and better night vision, 
perhaps putting them at an advantage over prey fish in low light. 

Conclusions 

Survival is clearly a key ecological mechanism, not only because it directly affects abundance 
but also because risk-avoidance behaviors can have strong indirect effects on individual 
fitness. IBMs and other mechanistic models designed to address problems driven in part by 
survival therefore are likely to need realistic representations of how mortality risks vary. This 
need is especially strong for models that represent behaviors that trade off risk and other 
elements of fitness. We previously (Railsback and Harvey 2020) addressed modeling such 
tradeoff behaviors but did not explicitly address how to model variation in risk. 
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Understanding and modeling risk and its effects are challenging because animals (and plants) 
are subject to a variety of risks, and each kind of risk can vary with characteristics of the 
individuals, their habitat, their behavior, and interactions such as competition and 
cooperation. Risk is also challenging to model because observed mortality rates are not 
necessarily directly related to intrinsic predation risk. Observed mortality is instead often a 
complex outcome of intrinsic risk (e.g., predator density), risk reduction behavior, and 
population status. Disease mortality rates, for example, could be a function of pathogen 
distributions (the intrinsic risk), the energy available to individuals to fight infection, and the 
frequency of infectious interactions among individuals. Predation mortality rates can be a 
function of predator densities, predator avoidance behavior, and prey densities. Consequently, 
observed mortality rates—even if we know the cause of mortality—do not necessarily 
provide the information we need to model risk. 

In our experience, the criteria for a useful multivariate model of survival probability listed 
above (Multivariate models using “survival increase functions”) are very important: to 
produce IBMs mechanistic enough to be reliable under diverse and novel conditions, without 
undue effort, we need approaches that let us model the effects of multiple variables, using 
different information and function forms for each variable, while the effect of each variable is 
easy to see and understand. The survival increase function method we propose meets those 
criteria and we expect it to be generally useful in a variety of models. However, we also 
expect that other modelers will develop useful alternatives. 
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