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Abstract 

InSTREAM 7 is a major revision of the individual-based stream trout model we have developed 

and used for over 20 years. This user manual provides background information on inSTREAM 

and its purposes, a complete description of the model formulation, a software guide, and 

guidance on applying the model. InSTREAM is a simulation model designed to support river 

management decisions; it predicts how stream trout populations respond to habitat alteration 

including altered flow, temperature, and turbidity regimes and changes in channel morphology. 

The model represents individual trout, with population responses emerging from how individuals 

are affected by their habitat and by each other (especially, via competition for food). Key 

individual behaviors include habitat and activity selection (deciding whether to feed or hide, and 

selecting the best available location), feeding and growth, mortality, and spawning. Trout growth 

depends on prey availability and hydraulic conditions. Mortality risks due to terrestrial predators, 

piscivorous fish, and extreme conditions are functions of habitat and trout variables. InSTREAM 

7 differs from previous versions in explicitly representing the daily light cycle via four time steps 

(dawn, day, dusk, night) and how light affects feeding, predation risk, and behavior; and 

representing activity selection as an additional adaptive behavior. InSTREAM 7 is newly 

implemented in the NetLogo software platform, which makes installation, use, and customization 

of the model much easier. 

Keywords: Individual-based model, instream flow, population model, water temperature, 

Salmonidae, stream, trout, turbidity. 
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Summary 

This user manual documents inSTREAM 7, a major update of the individual-based stream trout 

model we have developed and used for over 20 years. InSTREAM is a simulation model 

designed to understand and predict how stream and river salmonid populations respond to habitat 

alteration, especially altered flow, temperature, and turbidity regimes. This model has been used 

at sites ranging from headwaters to large regulated rivers for a variety of research and 

management questions. It is a complex model with many inputs and parameters, but because 

InSTREAM directly predicts the cumulative effect of multiple variables on fish populations, it 

does not require the kinds of untested assumptions and guesswork needed to base decisions on 

simpler models. 

InSTREAM 7 is a major revision, with new software, a complete update of all assumptions and 

parameter values, and several key formulation changes. InSTREAM 7 is unique in treating light 

explicitly as a factor controlling feeding success, predation risk, and therefore trout behavior; the 

daily light cycle is represented as four phases, for dawn, day, dusk, and night. At each phase, 

model trout adaptively decide whether to feed or hide, and where to do so, as a tradeoff between 

growth and avoidance of predation risk. 

Part I of the user manual provides background information and guidance on determining whether 

InSTREAM is a good tool for a particular situation.  

Part II describes InSTREAM 7’s formulation: its detailed assumptions and parameters and the 

information they were based upon. The model represents individual trout, with population 

responses emerging from how individuals are affected by their habitat and by each other 

(especially, via competition for food). Habitat is represented as microhabitat cells within one or 

several stream reaches. Key individual behaviors are habitat and activity selection (deciding 

when and where to feed), feeding and growth, mortality, and spawning. Fish growth depends on 

prey availability and hydraulic conditions. Mortality risks from terrestrial predators, piscivorous 

fish, and extreme conditions are functions of habitat and fish variables. Spawning and redd 

incubation are modeled simply while still representing effects of flow and temperature on 

reproductive success. Because it represents the full life cycle, InSTREAM is typically used to 

simulate populations over one or more decades.  

Part III is a detailed guide to the model’s software: how to install and run the model, prepare its 

input files, and control and interpret its output. InSTREAM 7 is newly implemented in NetLogo, 

a free, popular, and well-documented platform specifically for individual-based models. 

NetLogo provides a high-level programming language, graphical interfaces, and a powerful tool 

for automating simulation experiments. 

Part IV provides guidance on applying inSTREAM 7 to new sites and management questions. It 

addresses preparation of site input, including field methods and development of input files, 

calibration, the design and interpretation of simulation experiments, and how inSTREAM has 

been and can be validated.  



 

v 

 

Contents 
Part I: Introduction and Background..............................................................................................18 

1 Introduction to InSTREAM 7 ...............................................................................................18 

1.1 Document purpose and overview ....................................................................................18 

1.2 Why inSTREAM and individual-based modeling? .........................................................18 

1.3 Is inSTREAM the right tool? ...........................................................................................20 

1.4 History and evolution of inSTREAM; what is new in inSTREAM 7 .............................22 

2 Terminology and Conventions .............................................................................................23 

2.1 Terminology .....................................................................................................................23 

2.2 Conventions .....................................................................................................................27 

2.2.1 Text formatting .........................................................................................................27 

2.2.2 Parameters and parameter types ...............................................................................27 

2.2.3 Units .........................................................................................................................28 

2.2.4 Parameter and variable names .................................................................................28 

2.2.5 Mortality sources and survival submodels ...............................................................28 

2.2.6 Dates and times ........................................................................................................29 

2.2.7 Time step labeling in output .....................................................................................29 

2.2.8 Fish ages and age classes .........................................................................................29 

2.2.9 Habitat units and distances; adjacent cells ...............................................................30 

2.2.10 Latitudes ...............................................................................................................30 

2.2.11 Logistic functions and their parameters ...............................................................30 

Part II: Model Description .............................................................................................................32 

3 ODD Element 1: Purpose and Patterns ................................................................................32 

3.1 Model purposes ................................................................................................................32 

3.2 Patterns used to design and evaluate the model ...............................................................32 

3.2.1 Patterns driven by habitat selection .........................................................................33 

3.2.2 Patterns used to evaluate population dynamics .......................................................33 

3.2.3 Patterns driven by diel habitat and activity selection...............................................33 

3.2.4 Patterns used to evaluate inSTREAM 7 ...................................................................34 

4 ODD Element 2: Entities, State Variables, and Scales .........................................................34 

4.1 Entities and state variables ...............................................................................................34 

4.1.1 The observer.............................................................................................................35 

4.1.2 Reaches ....................................................................................................................36 

4.1.3 Cells .........................................................................................................................37 

4.1.4 Trout .........................................................................................................................38 

4.1.5 Redds........................................................................................................................39 

4.2 Model scales ....................................................................................................................40 

4.2.1 Spatial resolution and extent ....................................................................................40 

4.2.2 Temporal resolution and extent ................................................................................41 

4.2.2.1 Time steps ..................................................................................................... 41 

4.2.2.2 Model run duration ....................................................................................... 41 

5 ODD Element 3: Process Overview and Scheduling ...........................................................42 

6 ODD Element 4: Design Concepts .......................................................................................44 

6.1 Basic principles ................................................................................................................44 

6.2 Emergence .......................................................................................................................45 

6.3 Adaptation ........................................................................................................................45 



 

vi 

 

6.4 Objectives ........................................................................................................................45 

6.5 Learning ...........................................................................................................................46 

6.6 Prediction .........................................................................................................................46 

6.7 Sensing .............................................................................................................................46 

6.8 Interaction ........................................................................................................................46 

6.9 Stochasticity .....................................................................................................................46 

6.10 Collectives ...................................................................................................................47 

6.11 Observation ..................................................................................................................47 

7 ODD Element 5: Initialization..............................................................................................48 

7.1 Observer initialization .....................................................................................................48 

7.2 Habitat initialization ........................................................................................................48 

7.3 Trout initialization ...........................................................................................................49 

7.4 Observer output ...............................................................................................................50 

8 ODD Element 6: Input Data .................................................................................................50 

8.1 Flow, temperature, and turbidity input.............................................................................50 

8.2 The year shuffler ..............................................................................................................52 

9 ODD Element 7: Submodels ................................................................................................53 

9.1 Cell setup .........................................................................................................................53 

9.2 Hydraulics setup ..............................................................................................................53 

9.3 Hydraulics ........................................................................................................................55 

9.4 Trout setup .......................................................................................................................56 

9.5 Day length ........................................................................................................................56 

9.6 Step timing .......................................................................................................................57 

9.7 Simulation time ................................................................................................................58 

9.8 Habitat update ..................................................................................................................58 

9.9 Surface light .....................................................................................................................59 

9.9.1 Function for mean irradiance over a period of daylight ..........................................59 

9.9.2 Equations for time step mean irradiance ..................................................................60 

9.10 Cell light ......................................................................................................................61 

9.11 Cell resource depletion ................................................................................................63 

9.11.1 Resetting resources at the start of a time step ......................................................63 

9.11.2 Depletion of resources during habitat and activity selection ...............................64 

9.12 Trout memory ..............................................................................................................65 

9.13 Habitat and activity selection ......................................................................................66 

9.13.1 Habitat selection radius and identification of potential destination cells .............67 

9.13.2 Evaluation of expected fitness..............................................................................69 

9.13.3 Selection and implementation of the best alternative ...........................................74 

9.14 Trout survival ...............................................................................................................74 

9.15 High temperature trout mortality .................................................................................75 

9.16 Stranding trout mortality .............................................................................................77 

9.17 Low condition trout mortality......................................................................................77 

9.18 Terrestrial predation trout mortality.............................................................................79 

9.18.1 Trout length ..........................................................................................................80 

9.18.2 Depth ....................................................................................................................81 

9.18.3 Velocity.................................................................................................................82 

9.18.4 Light .....................................................................................................................83 



 

vii 

 

9.18.5 Distance to escape cover ......................................................................................84 

9.18.6 Hiding activity and use of hiding places ..............................................................85 

9.18.7 Parameter values and submodel exploration ........................................................86 

9.19 Fish predation trout mortality ......................................................................................89 

9.19.1 Trout length ..........................................................................................................91 

9.19.2 Depth ....................................................................................................................91 

9.19.3 Light .....................................................................................................................92 

9.19.4 Hiding activity ......................................................................................................93 

9.19.5 Trout predator density ..........................................................................................93 

9.19.6 Temperature ..........................................................................................................94 

9.19.7 Parameter values and submodel exploration ........................................................95 

9.20 Growth .........................................................................................................................98 

9.21 Growth rate ................................................................................................................100 

9.22 Drift feeding ..............................................................................................................101 

9.22.1 Reaction distance................................................................................................103 

9.22.2 Capture success ..................................................................................................107 

9.23 Search feeding ........................................................................................................... 111 

9.24 Maximum food intake ............................................................................................... 112 

9.25 Respiration costs ........................................................................................................ 114 

9.26 Maximum sustainable swimming speed ....................................................................120 

9.27 Spawning readiness ...................................................................................................123 

9.27.1 Minimum age, length, and condition .................................................................124 

9.27.2 Not spawned this season ....................................................................................125 

9.27.3 Date window ......................................................................................................125 

9.27.4 Temperature range ..............................................................................................125 

9.27.5 Flow limit ...........................................................................................................126 

9.27.6 Steady flows .......................................................................................................126 

9.28 Spawning ...................................................................................................................128 

9.29 Spawning site selection .............................................................................................130 

9.30 Spawning mate selection ...........................................................................................132 

9.31 Redd survival .............................................................................................................133 

9.32 Low temperature redd mortality ................................................................................134 

9.33 High temperature redd mortality ...............................................................................136 

9.34 Dewatering redd mortality .........................................................................................137 

9.35 Scour redd mortality ..................................................................................................137 

9.36 Superimposition redd mortality .................................................................................139 

9.37 Redd development .....................................................................................................140 

9.38 Redd emergence.........................................................................................................141 

9.39 Superindividual separation ........................................................................................143 

Part III: Software Guide ...............................................................................................................144 

10 Introduction to the InSTREAM 7 Software .......................................................................144 

10.1 Software goals and platform ......................................................................................144 

10.2 Software license .........................................................................................................144 

10.3 Testing, maintenance, and evolution .........................................................................145 

10.4 Overview and getting started .....................................................................................145 

11 Software Installation and Execution ...................................................................................145 



 

viii 

 

11.1 The project concept ...................................................................................................145 

11.2 Installing NetLogo and inSTREAM 7 .......................................................................146 

11.3 Becoming familiar with NetLogo ..............................................................................147 

11.4 Running and observing simulations ..........................................................................147 

11.4.1 NetLogo’s tabs....................................................................................................148 

11.4.2 Key interface buttons .........................................................................................148 

11.4.3 Other buttons ......................................................................................................149 

11.4.4 File switches .......................................................................................................149 

11.4.5 Inputs ..................................................................................................................149 

11.4.6 View and inspectors ...........................................................................................149 

11.4.7 View settings ......................................................................................................150 

11.5 NetLogo Export commands .......................................................................................151 

12 Output Files ........................................................................................................................151 

12.1 General information on file output ............................................................................151 

12.2 Main output files ........................................................................................................153 

12.3 Debugging output files ..............................................................................................153 

13 Input Files ...........................................................................................................................155 

13.1 Common characteristics of input files .......................................................................156 

13.2 GIS shapefile and background image file..................................................................156 

13.3 Hydraulic input ..........................................................................................................160 

13.4 Initial population characteristics ................................................................................161 

13.5 Time series inputs ......................................................................................................162 

14 Simulation Control and Parameter Values ..........................................................................163 

14.1 Model parameters ......................................................................................................164 

14.1.1 Model run control ...............................................................................................165 

14.1.2 Input file names and GIS variable names...........................................................167 

14.1.3 Year shuffler controls .........................................................................................168 

14.1.4 Secondary output switches .................................................................................169 

14.1.5 Display and output control parameters...............................................................169 

14.1.6 Light parameters .................................................................................................171 

14.1.7 Input testing parameters .....................................................................................172 

14.2 Reach parameters .......................................................................................................172 

14.3 Trout and redd parameters .........................................................................................173 

15 Simulation Experiments with BehaviorSpace ....................................................................179 

15.1 Introduction to BehaviorSpace ..................................................................................179 

15.2 Experiment setup .......................................................................................................181 

15.3 BehaviorSpace output ................................................................................................188 

15.4 BehaviorSpace and output files .................................................................................189 

15.5 Year shuffler replication ............................................................................................190 

16 Software Modification ........................................................................................................191 

16.1 General procedures for modifying code ....................................................................191 

16.2 Modifying the population output files .......................................................................192 

16.3 Events output .............................................................................................................196 

16.4 Modifying secondary output files ..............................................................................196 

16.5 Modifying graphical output .......................................................................................197 

16.6 Modifying BehaviorSpace outputs ............................................................................198 



 

ix 

 

17 Troubleshooting Guide .......................................................................................................200 

Part IV: Application Guide ...........................................................................................................206 

18 Introduction and Overview of the InSTREAM 7 Application Guide .................................206 

18.1 Application objectives ...............................................................................................206 

18.2 Typical application steps and summary of data requirements ...................................206 

19 Study Reach Selection and Layout .....................................................................................207 

19.1 Reach selection ..........................................................................................................207 

19.2 Reach layout in inSTREAM ......................................................................................209 

20 Time Series Inputs ..............................................................................................................209 

21 Hydraulic Modeling and Input Preparation ........................................................................210 

21.1 Hydraulic modeling considerations ...........................................................................210 

21.2 Preparation of hydraulic input ................................................................................... 211 

22 Cell Delineation and Habitat Variables ..............................................................................212 

22.1 Delineating cell boundaries .......................................................................................212 

22.2 Assigning cell habitat variable values .......................................................................215 

22.2.1 General guidance on field estimation of habitat variables .................................215 

22.2.2 Cell habitat variables ..........................................................................................215 

22.2.3 Methods for observing and assigning values .....................................................216 

23 Parameter Evaluation..........................................................................................................217 

23.1 Reach-specific habitat parameters .............................................................................218 

23.2 Site- and species-specific trout parameters ...............................................................220 

24 Calibration ..........................................................................................................................223 

24.1 Calibration purposes and general considerations ......................................................223 

24.2 Calibration targets ......................................................................................................224 

24.2.1 Selecting population measures ...........................................................................224 

24.2.2 Representing time: constant vs. time-series targets ...........................................224 

24.2.3 Comparing model results to observations ..........................................................225 

24.3 Calibration parameters and outputs ...........................................................................225 

24.4 Calibration experiment designs .................................................................................228 

24.5 Calibration model run setup ......................................................................................229 

25 Simulation Experiments .....................................................................................................230 

25.1 General study design considerations .........................................................................230 

25.2 Outputs to analyze .....................................................................................................231 

25.3 General experimental designs ....................................................................................233 

25.3.1 Scenario comparisons .........................................................................................233 

25.3.2 Sensitivity experiments ......................................................................................234 

25.4 Variation in inputs: Realistic vs. unrealistic scenarios ..............................................235 

25.5 Conclusions and summary guidance .........................................................................235 

26 Sensitivity and Uncertainty in InSTREAM 7 .....................................................................236 

26.1 General considerations ..............................................................................................236 

26.2 Sensitivity of primary predictions to parameter values .............................................237 

26.3 Sensitivity of primary predictions to initial conditions .............................................263 

26.4 Sensitivity of primary predictions to spatial resolution .............................................264 

26.5 Robustness of management conclusions to parameter uncertainty ...........................264 

27 Validation of InSTREAM ...................................................................................................267 

27.1 What is “validation”? .................................................................................................267 



 

x 

 

27.2 Published validation studies ......................................................................................267 

27.3 Guidance for site-specific validation .........................................................................269 

Acknowledgments........................................................................................................................272 

References ....................................................................................................................................273 

Index ............................................................................................................................................290 

 

  



 

xi 

 

Figures 

Figure 1. Conceptual diagram of inSTREAM 7. From bottom to top: Predicted trout population 

characteristics of management significance are aggregated from of the fates of individuals: how 

many survive to what size and reproduce successfully. Individual fate is determined by habitat 

conditions but also by the adaptive behavior used to balance demands of growth, survival, and 

reproduction. Adaptive behavior is affected by feedbacks from the rest of the population: the 

options available to an individual and their benefits depend on what competing individuals do. 

Habitat conditions are driven by time-varying regimes of flow, temperature, and turbidity, as well 

as time of day. ............................................................................................................................... 20 

Figure 2: A reach and its cells. ..................................................................................................... 36 

Figure 3: Example time series input, viewed in a spreadsheet. (Sect. 13.5 describes the file 

format.).......................................................................................................................................... 51 

Figure 4: Example extract from a hydraulic input file, viewed in a spreadsheet. The row 

highlighted in blue provides the flows at which depths were calculated by an external hydraulic 

model, and the first column (green cells) indicate which cell the depth values are for. For 

example, cell 46 has a depth of 0.33 cm when the flow is 26.9 m3/s. ........................................... 55 

Figure 5: Duration (h) of day, night, and twilight (both dawn and dusk) phases over a year, for 

(top) latitude = 30°, and (bottom) 50º. Twilight phase length uses the right Y axis. .................... 57 

Figure 6: Mean surface irradiance as a function of date, during daytime (left Y axis) and twilight 

(dawn and dusk, which have equal irradiance; right Y axis), for latitudes of 30° and 50°. The 

oscillations in twilight values are due to surface irradiance being a complex function of phase 

length and sun angles through the day; these oscillations are negligible (<2 W/m2; right Y axis).

....................................................................................................................................................... 61 

Figure 7: The cell light submodel’s light attenuation as a function of depth and turbidity. The Y 

axis is the degree to which surface light is attenuated at half the cell’s depth, or cell-light / 

sunlight-irradiance. The shading parameter is equal to 0.8 (light is reduced 20% by shading). 63 

Figure 8. Logistic relation between trout length and habitat selection radius R, with values of 

15,000, 6, and 20 cm for trout-move-radius-max, trout-move-radius-L1, and trout-move-

radius-L9. Note that the Y axis shows R in m, not cm. ................................................................. 68 

Figure 9: Submodels used in habitat and activity selection. Evaluating the fitness measure used 

to rate combinations of activity and habitat cell requires calculating the growth rate and survival 

probability that a trout would obtain, which requires many of inSTREAM’s submodels. ............ 69 

Figure 10: Sensitivity of predicted trout abundance and mean length to the parameter trout-

fitness-horizon. Mean results over the last 8 years of 10-year simulations at the “RESTORED” 

site of Railsback et al. (2021). ...................................................................................................... 70 

Figure 11: Possible trajectories in trout-condition (left) and the resulting trajectories in daily 

survival probability for low condition mortality (right), over a time horizon (trout-fitness-

horizon) of 90 d. ........................................................................................................................... 72 

Figure 12: Survival submodel for high temperature, using the parameter values in Table 8, 

showing daily survival and the corresponding probability of surviving for 12 hours and 10 days.

....................................................................................................................................................... 77 



 

xii 

 

Figure 13: Probability of surviving low condition mortality for 1, 30, and 90 days, with mort-

condition-S-at-K5 = 0.98. The 30- and 90-day curves assumed that condition is constant over 

those periods at the X axis value. .................................................................................................. 79 

Figure 14: Survival increase function for effect of trout length on terrestrial predation mortality, 

using the parameter values from Table 9. Trout fry are typically born with a length >2.5 cm 

(Sect. 9.38), so none have a function value above about 0.95. ..................................................... 81 

Figure 15: Survival increase function for depth effect on terrestrial predation mortality, using the 

parameter values from Table 9 for small streams and large rivers. ............................................. 82 

Figure 16: Survival increase function for effect of water velocity on terrestrial predation 

mortality, using the parameter values from Table 9 for small streams and large rivers. ............. 83 

Figure 17: Terrestrial predation survival increase function for cell irradiance, as affected by 

surface light, turbidity, and depth. Irradiance is typically > 100 during daytime, around 20 

during twilight, and < 1.0 at night. ............................................................................................... 84 

Figure 18: Terrestrial predation survival increase function for distance to escape cover. .......... 85 

Figure 19: Variation in terrestrial predation survival probability with trout length and cell depth, 

under three light conditions: top left: sunlight-irradiance = 200, characteristic of daytime; top 

right: sunlight-irradiance = 20, characteristic of twilight; and bottom: sunlight-irradiance = 

0.9, night. ...................................................................................................................................... 87 

Figure 20: Variation in terrestrial predation survival with depth and distance to escape cover. 

Trout length is 10 cm, velocity is 20 cm/s, turbidity is 20 NTU, and surface irradiance is 200 

W/m2 (daytime).............................................................................................................................. 88 

Figure 21: Fish predation survival increase function for trout length, using the parameter values 

from Table 10. ............................................................................................................................... 91 

Figure 22: Fish predation survival increase function for depth, using the parameter values from 

Table 10. ........................................................................................................................................ 92 

Figure 23: Fish predation survival increase function for cell irradiance, as affected by surface 

light, turbidity, and depth. ............................................................................................................. 93 

Figure 24: Fish predation survival increase function for piscivorous trout density. .................... 94 

Figure 25: Fish predation survival increase function for reach temperature, parameterized 

assuming trout are the only predators. ......................................................................................... 95 

Figure 26: Variation in fish predation survival probability with trout length and cell depth, under 

three light conditions: top left: sunlight-irradiance = 200, characteristic of daytime; top right: 

sunlight-irradiance = 20, characteristic of twilight; and bottom: sunlight-irradiance = 0.9, 

night. ............................................................................................................................................. 96 

Figure 27: Reaction distance as a function of trout length: observations of Schmidt and O’Brien 

(1982) and the model with parameters in Table 14. ................................................................... 104 

Figure 28: Response of reaction distance (as a fraction of the zero-turbidity values) to turbidity. 

The symbols are observations by Sweka and Hartman (2001) and the curve is the turbidity 

function. ...................................................................................................................................... 106 



 

xiii 

 

Figure 29: Combined effects of irradiance and turbidity on reaction distance for drift feeding. 

Contours indicate turbidity-function ×light-function in cells with depth of 20 cm (left) and 100 

cm (right), using standard cell light parameter values. The light function is driven by cell-light, 

which depends on depth and turbidity as well as surface irradiance. ........................................ 107 

Figure 30: Capture success model and the observations it was based on. H&G: Hill and 

Grossman (1993), B&G: Bozeman and Grossman (2019), Donofrio: Donofrio et al. (2018), P-

Coho: Piccolo et al. (2008) results for Coho Salmon, and P-SH: Piccolo et al. results for 

Steelhead. .................................................................................................................................... 108 

Figure 31. Exploration of drift feeding growth rates. Each panel shows how the relation between 

cell velocity (X) and trout growth rate (Y) depends on one other variable. Growth was calculated 

using the parameter values in Table 12 and Table 14, and a value of 3.0E-10 g/cm3 for reach-

drift-conc. Except as indicated in each panel’s legend, simulations used these values: trout-

length, 15 cm; temperature, 15°C; cell-light, 100 W/m2 (daytime); turbidity, 0.0 NTU; cell-depth, 

100 cm; and reach-shelter-speed-frac,1.0 (no velocity shelter). ................................................. 110 

Figure 32: Temperature function for maximum food intake, with parameter values from Table 15.

...................................................................................................................................................... 114 

Figure 33: Resting metabolic rate as a function of temperature in the studies of Lee et al. (2003) 

and Verhille et al. (2016). Curves with round symbols show the equations developed in those 

publications to fit the data; curves labeled “exponential model” are exponential functions fit to 

the other curves over the range of observed temperatures. The two data sets of Lee et al. are 

without and with fish adjusted to higher than ambient temperatures. ......................................... 116 

Figure 34: Respiration temperature functions fit to observations of Lee et al. (2003) and Verhille 

et al. (2016) using an exponential function of the square of temperature (the “exponential2 

model”). The curves with round symbols show the equations fit to data in these publications, 

transformed into the temperature function by dividing their values by respiration at 0 from the 

exponential2 model. The  curves without symbols are the exponential2 models. ......................... 117 

Figure 35: Relation between swimming speed and oxygen consumption, translated into the 

activity function for respiration costs, for 30-cm Chinook Salmon (Gallaugher et al. 2001), 8-cm 

Brown Trout (Tudorache et al. 2008), and 33-cm Rainbow Trout (Johansen et al. 2020). The 

curves represent an exponential regression fit to the square of swimming speed divided by trout-

max-speed. ................................................................................................................................... 118 

Figure 36. Respiration submodel results as a function of temperature and swimming speed, using 

the parameter values of Table 16. Results are for healthy 5-cm (left) and 20-cm (right) trout. 

Contours indicate simulated total respiration (J/d). .................................................................... 119 

Figure 38: Variation in maximum sustainable swim speed with temperature. The Y value is 

measured maximum speed divided by speed measured at or near 15° in the same study. 

Observations from six studies are shown separately. The curve illustrates the model’s 

temperature function fit to these data. ........................................................................................ 122 

Figure 39: Spawning depth and velocity suitability relations, for the parameter values in Table 

20................................................................................................................................................. 132 

Figure 40: Redd survival rates for low and high temperature, using example parameters of Table 

21................................................................................................................................................. 135 



 

xiv 

 

Figure 41. Example inSTREAM 7 project. In this example, all input files except the GIS shapefile 

are in the main project directory. Alternatively, the other input files (those with .csv extensions) 

could be in their own subdirectory. The project contains its own customized copy of the 

inSTREAM 7 software and parameter file. ................................................................................. 146 

Figure 42. Example inSTREAM 7 interface. ............................................................................... 148 

Figure 43. NetLogo’s View during a simulation. White boundaries delineate cells. Here, cells are 

shaded by water depth. Trout appear as triangle-like shapes. There are several redds present, 

especially near the southwest end of the reach. .......................................................................... 150 

Figure 44. The View of an inSTREAM 7 application with three reaches. The arrows indicate 

where separate study sites were joined in GIS to produce one shapefile of cell polygons 

representing the reaches as if they were adjacent. The actual study sites are several km apart. 

(This input set has 5358 cells and represents about 3000 m of a large river.) ........................... 157 

Figure 45. Example View with the optional background image. The image was trimmed in GIS to 

the same extent and shape as the habitat shapefile. ................................................................... 160 

Figure 46. Example extract from a hydraulic input file edited in (top) Excel and (bottom) a text 

editor. (The ellipses in column E do not appear in the file but instead represent the 20 columns 

not shown in this figure.) ............................................................................................................. 161 

Figure 47. Example initial population initialization input, viewed in Excel. ............................. 162 

Figure 48. Example time series input file, viewed in Excel. ....................................................... 163 

Figure 49. Example parameter file, part 1: Model run control, input file, GIS variable name, 

year shuffler, and secondary output control parameters. This and subsequent figures illustrate 

what the file looks like in NetLogo’s code editor. ........................................................................ 165 

Figure 50. Example parameter file, part 2: Display and output, and light parameters. ............ 171 

Figure 51. Example parameter file, part 3: Reach parameters. ................................................. 173 

Figure 52. Example parameter file, part 4: Trout parameters (a)—species names, feeding and 

growth, and spawning. ................................................................................................................ 175 

Figure 53. Example parameter file, part 5: Trout parameters (b)—survival, redds, and 

superindividual size. ................................................................................................................... 176 

Figure 54. Example parameter file, part 6: Trout maximum consumption interpolation tables for 

a three-species application. ........................................................................................................ 177 

Figure 55. Trout maximum consumption interpolation table for a one-species application. ..... 177 

Figure 56. Example parameter file, part 7: Trout spawning depth suitability interpolation tables.

..................................................................................................................................................... 178 

Figure 57. Example parameter file, part 8: Trout spawning velocity suitability interpolation 

tables. .......................................................................................................................................... 179 

Figure 58. Example Interface showing parameters defined via a slider (food-adjuster), 

inputs (time-series-file; random-number-seed), and switches (for output files). 181 



 

xv 

 

Figure 59. Creating a food-adjuster variable on the NetLogo Interface. When a slider is added to 

the Interface, this menu appears. Fill it out with the name of the variable being created, the 

range of its values, and its initial value. ..................................................................................... 182 

Figure 60. The slider for controlling terrestrial predation survival. .......................................... 183 

Figure 61. Adding an “input” to define a string variable such as a file name. ......................... 183 

Figure 62. A new BehaviorSpace experiment. ............................................................................ 185 

Figure 63. BehaviorSpace’s run options dialog. ......................................................................... 187 

Figure 64. The Running Experiment dialog that appears while BehaviorSpace is executing its 

model runs. .................................................................................................................................. 188 

Figure 65. Example BehaviorSpace output file, as it appears in Excel. ..................................... 189 

Figure 66. BehaviorSpace experiment setup with additional output variables reporting separate 

results for Rainbow and Brown Trout. ........................................................................................ 200 

Figure 67. InSTREAM reaches developed with four alternative cell delineation methods. Top: 

traditional transect method with cells delineated in the field. Second: GIS delineation with cell 

vertices entered manually. Third: GIS delineation with cell centroids entered manually and 

boundaries defined as Thiessen polygons. The top reach is 184 m long, with 167 cells having 

mean area of 19 m2; the middle reach extends 1355 m from east to west with 825 cells averaging 

8.6 m2; and the bottom reach extends 598 m east-west and has 832 cells with mean area of 48 

m2. Bottom: Hexagonal cells produced with the QGIS tools of Dudley (2018). Each cell has an 

area of 20 m2, here shaded by velocity. ....................................................................................... 214 

Figure 68. Example sensitivity experiment for parameters typically used to calibrate inSTREAM. 

Graphs display response of simulated abundance (left Y axis) and mean length (right Y axis) of 

age 1 and age 2 and older trout to: (A) reach-drift-conc, (B) reach-terr-pred-min, (C) reach-

drift-regen-distance, (D) reach-search-prod, and (E) reach-fish-pred-min. Graph F illustrates 

response of age 0 and 1 trout to reach-fish-pred-min; note its different Y axis scales. ............. 227 

Figure 69. Results of the initial population sensitivity experiment. The Y axis indicates the mean 

correlation, over five year-shuffler replicates, of the abundance of age 1 and older trout in the 

simulated year versus the initial abundance. .............................................................................. 263 

Figure 70. Results of an example analysis of scenario rankings to parameter uncertainty, re-

drawn from Figure 5 of Railsback et al. (2021). Y values are “jittered” to make each symbol 

visible. ......................................................................................................................................... 266 

 

  



 

xvi 

 

Tables 

Table 1: Observer state variables ................................................................................................. 35 

Table 2: Reach state variables ...................................................................................................... 36 

Table 3: Cell state variables ......................................................................................................... 37 

Table 4: Trout state variables ....................................................................................................... 38 

Table 5: Redd state variables ........................................................................................................ 40 

Table 6: Example trout population initialization input ................................................................. 49 

Table 7: Alternative parameter values for light extinction ........................................................... 62 

Table 8: Parameters and values for high temperature mortality .................................................. 76 

Table 9: Parameters and values for terrestrial predation ............................................................ 88 

Table 10: Parameters and values for fish predation ..................................................................... 97 

Table 11: Parameters and values for growth ................................................................................ 99 

Table 12: Parameters and values for growth rate ...................................................................... 101 

Table 13: Illuminance and irradiance values typifying a range of light conditions. .................. 102 

Table 14: Parameters and values for the drift feeding submodel. .............................................. 109 

Table 15: Example temperature function for maximum food intake, cmax-temp-function. ......... 114 

Table 16: Parameters and values for respiration costs. .............................................................. 119 

Table 17: Parameters and values for maximum sustainable swim speed ................................... 122 

Table 18: Example parameter values for spawning readiness ................................................... 126 

Table 19: Parameter values for fecundity and egg viability ....................................................... 129 

Table 20: Example values for trout-depth-suitability and trout-velocity-suitability. ................ 132 

Table 21: Parameters and values for low and high temperature mortality in redds .................. 136 

Table 22: Parameter values for redd development ..................................................................... 141 

Table 23. Debugging output file information. ............................................................................. 154 

Table 24. Cell variables required as polygon properties in the shapefile. The second column is 

the inSTREAM parameter that must contain the property name used in the shapefile. Cell 

variables are fully defined in Sect. 4.1.3. .................................................................................... 159 

Table 25. Model run control parameters. ................................................................................... 166 

Table 26. Input file name and GIS variable name parameters. .................................................. 167 

Table 27. Year shuffler parameters. ............................................................................................ 168 

Table 28. Secondary output control parameters. ........................................................................ 169 

Table 29. Display and output parameters. .................................................................................. 171 

Table 30. Light parameters. ........................................................................................................ 172 



 

xvii 

 

Table 31. Reach parameters. ....................................................................................................... 219 

Table 32. Sensitivity analysis results for global and reach habitat parameters. ........................ 239 

Table 33. Parameter sensitivity analysis results for trout parameters........................................ 242 

Table 34. Parameter sensitivity analysis results for trout survival parameters. ......................... 251 

Table 35. Parameter sensitivity analysis results for redd parameters. ....................................... 257 

Table 36. Parameters ranked by absolute value of scaled slope in the sensitivity analysis. 

Parameters near the top of this table can be assumed important in all applications; other 

parameters may have strong effects in particular applications. ................................................. 259 

 

 



 

18 

 

Part I: Introduction and Background 

1 Introduction to InSTREAM 7 

1.1 Document purpose and overview 
This document provides a comprehensive user guide to version 7 of inSTREAM, the individual-

based Stream Trout Research and Assessment Model. Version 7, first released in 2019, is a 

major revision of inSTREAM. Here we specifically describe inSTREAM version 7.3, released in 

2021, but this document will generally apply to future releases of inSTREAM 7. 

The user guide has 27 sections, divided into four parts:  

• Part I (sects. 1 and 2) provides an overview of the guide and background information on 

inSTREAM, and establishes terminology and conventions used throughout the document.  

• Part II (sects. 3 through 9) provides a complete description of the model: its assumptions, 

equations and algorithms, and parameters. The model description is linked to the model 

software via footnotes that describe where in the software each part of the model is 

implemented. Sects. 3 through 6 provide sufficient understanding of the model for most 

users, while sects. 7 through 9 provide complete details and justification of inSTREAM’s 

many submodels. 

• Part III (sects. 10 through 17) is a guide to inSTREAM 7’s software, with information 

how to install and execute the model, prepare input files, control output, set up automated 

simulation experiments, and make common software modifications. 

• Part IV (sects. 18 through 27) provides guidance on applying inSTREAM, from selecting 

study sites and collecting field data, through model calibration and the design and 

interpretation of simulation experiments for particular kinds of questions. Sect. 27 

discusses how inSTREAM has been, and can be, validated. 

The inSTREAM 7 software and additional supporting materials are distributed via the web site 

for individual-based ecological modeling at Humboldt State University: 

https://ecomodel.humboldt.edu. We encourage users and potential users of inSTREAM 7 to 

periodically check that site for updates: improvements and fixes to inSTREAM 7, its software, 

and this documentation will be posted there. 

1.2 Why inSTREAM and individual-based modeling?  
The development of inSTREAM (and its predecessor models: Jager et al. 1993; Van Winkle et 

al. 1996) was motivated by frustration with conventional assessment approaches that consider 

flow effects only through the concept of “habitat suitability” and temperature effects only by 

whether high-temperature thresholds are exceeded. Habitat suitability and temperature thresholds 

are extremely simplistic approaches that ignore most of what we know about trout physiology 

and ecology. Especially, inSTREAM is designed to overcome these specific limitations of 

conventional assessment methods: 

• They are “static”, not explicitly considering variation in conditions over time. 
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• They cannot make testable predictions of population responses to management, which 

limits their value in decision-making and makes the scientific cycle of model testing and 

improvement impossible. 

• Empirically observed habitat “suitability” varies with, e.g., fish size, temperature, 

turbidity, season, time of day; is difficult to quantify reliably; and the availability of 

“suitable” habitat is not clearly a good predictor of population status (e.g., Garshelis 

2000; Railsback et al. 2003). Observed habitat suitability relations are especially 

questionable for predicting responses to novel conditions. 

Individual-based models (IBMs; Grimm and Railsback 2005) offer the potential to overcome 

these limitations by capturing the key mechanisms through which populations respond to time-

varying habitat conditions and management. By representing the key habitat variables that affect 

individuals and the mechanisms through which those variables affect individual fitness (growth, 

survival, reproduction), an IBM can predict population responses by aggregating the fates of 

simulated individuals over time. A key feature of IBMs is representing adaptive behavior: how 

individual animals trade off the conflicting demands of growth, survival, and reproduction 

through behaviors such as selecting where to feed and when to hide instead of feeding. IBMs 

using this approach can predict population responses to realistically varying habitat conditions, 

making results directly applicable to management decisions and testable against field 

observations. 

InSTREAM applies this approach to stream trout management (Figure 1). The model is driven 

by dynamic (time-varying) input for three main management variables: flow, temperature, and 

turbidity. These inputs control local (spatially variable) habitat variables that directly affect trout 

fitness, e.g., food availability, depth, velocity, availability of cover for feeding and escaping 

predators, and predation risk. The model trout then use adaptive behavior to determine, 

throughout the daily light cycle, whether to feed or hide and where to do so. Individual growth, 

survival, and spawning success therefore depend on habitat conditions and competition with 

other trout, mediated by behavior. Over simulated time, population responses to the inputs 

emerge from the fates of individual trout. 
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Figure 1. Conceptual diagram of inSTREAM 7. From bottom to top: Predicted trout population 

characteristics of management significance are aggregated from of the fates of individuals: how 

many survive to what size and reproduce successfully. Individual fate is determined by habitat 

conditions but also by the adaptive behavior used to balance demands of growth, survival, and 

reproduction. Adaptive behavior is affected by feedbacks from the rest of the population: the 

options available to an individual and their benefits depend on what competing individuals do. 

Habitat conditions are driven by time-varying regimes of flow, temperature, and turbidity, as well 

as time of day. 

1.3 Is inSTREAM the right tool? 
Potential users of inSTREAM 7 must start by determining whether the model is an appropriate 

tool for their particular river management or research problems. In general, inSTREAM was 

designed for studies of how changes in habitat (channel morphology, flow, temperature, and 

turbidity) affect the long-term production and persistence of trout populations. InSTREAM has 

also proven useful for studies of how trout populations are affected by the biological processes 

represented in the model. Examples include examining interactions and competition among 

multiple trout species (or even among age classes of the same species) and effects of changes in 

food production or predation risk. Sect. 3.1 lists specific kinds of assessment and research 

problems that inSTREAM was designed to address. 

InSTREAM is designed as much as a way to think about and understand river management 

questions as a way to predict the consequences of specific actions, because it includes the major 

mechanisms through which we know physical habitat, temperature, and biotic interactions affect 

trout individuals and populations. Applying inSTREAM to a management situation has benefits 

even if its results are not used directly in decision-making: it provides a checklist of important 
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turbidity regimes

Dynamic habitat 
variables that drive 

fitness

Adaptive trout 
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Individual survival, 
growth, 
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mechanisms to consider and defines what input and data are needed to evaluate those 

mechanisms. InSTREAM is also very useful as a field study planning and design tool, both for 

studies intended to support a decision process and for post-decision monitoring. Designing 

studies so that they provide input to inSTREAM or test the model’s assumptions ensures that 

those studies will be directly useful for making and evaluating management decisions. Using 

inSTREAM encourages us to think explicitly about processes that drive trout populations—

feeding and growth, predation risk, spawning success—in a way that directly supports 

management decisions. 

No clear limits define the physical characteristics of sites (size, slope, geomorphology, etc.) 

where inSTREAM could be applied. However, we encourage users to understand the model’s 

assumptions and submodels well enough to determine their appropriateness for specific 

applications. For any application, we recommend that users review model details and determine 

whether any processes should be turned off or altered.  

InSTREAM will not always be the right model. It cannot be applied where sufficient site-

specific input is unavailable or cannot be reasonably approximated. Not all study sites and 

problems will be compatible with inSTREAM’s fundamental assumptions, and some involve 

processes that are not adequately represented in the model. Examples of sites or problems where 

inSTREAM may not be appropriate (without modification) include: 

• Sites where non-salmonid species are significant competitors for food or habitat. 

• Sites where water quality constituents other than temperature and turbidity have strong 

effects or are the management issues of interest. For example, standard versions of 

inSTREAM do not consider dissolved oxygen, or the effects of fine sediment on egg 

incubation. 

• Study problems involving adaptive behaviors not in inSTREAM 7. For example, the 

standard versions do not represent how all life history characteristics adapt via behavior 

(e.g., adaptive selection of spawning age or size), and do not include evolution, so it is 

not useful for many problems of life history adaptation. (But note: The steelhead version 

of Railsback et al. 2014 provides an example of how life history adaptation can be added 

to inSTREAM, while Ayllόn and colleagues, e.g., Ayllόn et al. 2016, have modified 

inSTREAM to include trait evolution.) 

InSTREAM also does not represent ice and its effects. Ice can cause direct mortality, alter or 

exclude habitat, reduce invertebrate food production via scouring, and provide protection from 

predation. InSTREAM excludes these processes because they are difficult to model; even the 

presence of ice is difficult to predict. Potential applications of inSTREAM to sites with ice may 

reasonably neglect ice effects, or represent them in the model in a simple way. Management 

actions that do not affect ice (e.g., changes in turbidity or summer flow) could be evaluated with 

inSTREAM by assuming ice effects are constant across alternatives. But inSTREAM would 

require significant modification to provide a mechanistic representation of how trout populations 

respond to management actions that strongly affect ice (e.g., altering winter flow or 

temperature). 

The complexity of inSTREAM is also a concern in deciding whether to use it, especially in 

contentious situations where methods and results will be heavily scrutinized. There is a 
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widespread belief that models such as inSTREAM that have many assumptions and parameters 

are inherently more uncertain and more subject to bias than simpler models. However, 

inSTREAM is not clearly more uncertain or subject to bias than traditional instream flow models 

(Railsback 1999; 2000; 2016). First, inSTREAM explicitly represents important processes 

neglected in models such as PHABSIM (Bovee et al. 1998); when left out of models, these 

processes are either ignored or must be dealt with ad hoc as decisions are made, adding 

uncertainty. Dealing with results for multiple life stages is a perfect example: PHABSIM 

produces separate results for spawning, juveniles, and adults, and there are no well-justified 

methods for combining these results into meaningful population-level results. InSTREAM 

directly predicts population status from what happens at every life stage. Second, habitat 

preference models such as PHABSIM depend almost entirely on preference curves, and these 

curves are essentially a large parameter set. Hence, these models also have many parameters. 

Third, this document defines and justifies each equation and parameter value, and almost all 

inSTREAM parameters can be independently evaluated. Finally, the robustness analyses 

described in Sect. 26.5 show that inSTREAM’s results for decision-making—the ranking of 

management alternatives by the trout populations they provide—can be quite robust to parameter 

uncertainty. 

Unfortunately, inSTREAM could not be designed as a generic model of stream fish; it is not 

readily applicable to species that differ from trout in fundamental ways. InSTREAM specifically 

assumes that individuals feed within a relatively small area for an entire time step (Sect. 4.2), so 

it cannot represent fish that forage over large areas in short time periods. While inSTREAM 

includes an alternative to drift feeding (Sect. 9.23), the search feeding submodel is very simple. 

InSTREAM’s assumption that fish either feed or avoid predators over an entire time step is not 

useful for fish that use less digestible food than trout do: while inSTREAM assumes growth to be 

limited by the rate of food intake, the growth of grazers that consume relatively undigestible prey 

is typically limited by digestion time. Such fish can fill their gut relatively quickly but convert 

food to energy slowly; consequently, their behavior is likely less about feeding and more about 

avoiding predation while they digest. InSTREAM also neglects schooling as a risk reduction 

behavior, limiting its applicability to species that depend on that behavior. 

1.4 History and evolution of inSTREAM; what is new in inSTREAM 7 
InSTREAM 7 is the seventh major version in a family of individual-based salmonid models that 

have been in development since 1998 by the USDA Forest Service’s Pacific Southwest Research 

Station (Redwood Sciences Laboratory), Lang Railsback & Associates, Humboldt State 

University, and other partners. Previous versions included: 

• A single-species model specifically for our Little Jones Creek study site (Railsback and 

Harvey 2001); 

• Addition of the capability to simulate multiple linked stream reaches and arbitrary 

numbers of trout species (Railsback et al. 2009);  

• Two versions with sub-daily time steps that represent the difference between day and 

night and within-day flow fluctuations from hydropower operations (Railsback et al. 

2005; Railsback and Sheppard 2014); 

• Addition of the ability to drive habitat simulations with modern two-dimensional 

hydraulic models; and 
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• InSALMO, a version that represents freshwater life stages of salmon and Steelhead Trout 

(Railsback et al. 2013; 2014). 

Railsback et al. (2009) provide additional background on the origins and early development of 

inSTREAM. The first version of inSTREAM was based in part on the trout IBM of Van Winkle 

et al. (1996, 1998), and inSTREAM 7 still contains some methods from that model. In a separate 

research program, Daniel Ayllón and colleagues at the Helmholtz Centre for Environmental 

Research-UFZ (Germany) and the Complutense University of Madrid (UCM, Spain) developed 

their own version (“inSTREAM-Gen”) that includes evolution of life history traits. They apply 

inSTREAM-Gen to important research and management issues (e.g., Ayllón et al. 2016, 2018, 

2019a, b, 2021).  

InSTREAM 7 differs in many ways from previous versions, both in the model formulation and 

its implementation in software. Major changes from all previous versions include: 

• There are by default four times steps per day, representing dawn, daytime, dusk, and 

night; previous versions used either one step per day or two steps representing daytime 

and night. Our simulation experiments indicate that this inclusion of night and 

crepuscular periods can affect model results in ways likely to be important to 

management decisions (Railsback et al. 2021). 

• Light is now an important, explicit driver of model processes. The duration of each time 

step is determined by day length and how it varies with date and latitude. Light intensity 

(as irradiance) is calculated for each cell as a function of the time step’s mean surface 

irradiance, turbidity, and cell depth; it affects both feeding and predation risk. 

• The model now quantifies predation risk as the combined effects of several factors 

assumed to reduce risk, rather than as the effect of only the most prominent of those 

factors (sects. 9.18 and 9.19). 

• InSTREAM 7 is programmed in the NetLogo modeling platform (Wilensky 1999); 

previous versions were programmed in Objective C and the Swarm simulation library, 

with separate graphical user interface software. The change to NetLogo makes the code 

much shorter, easier to understand, and easier to modify and maintain.  

• Some spatial input is imported directly from geographical information systems (GIS) 

instead of requiring export to intermediate file formats.  

2 Terminology and Conventions 

2.1 Terminology 
This section provides inSTREAM-specific definitions of terms used throughout the document. 

Much of the terminology is adopted from IBM terminology used by Railsback and Grimm 

(2019), and the ODD (Overview, Design concepts, Details; Grimm et al. 2006, 2010, 2020) 

protocol we use to describe inSTREAM. In this section only, terms defined here are set in bold 

typeface when used in defining other terms. 



 

24 

 

Action. An element in an IBM’s schedule. An action is defined by a list of model entities, the 

submodel that the entities execute, and the order in which the entities execute the submodel.  

Activity. One of three behaviors that model trout choose among: hiding, drift feeding, and 

search feeding.  

Activity selection. The trout behavior of selecting an activity; however, activity selection is 

contingent on habitat selection and implemented in the habitat and activity selection submodel.  

Behavior, individual behavior, system behavior. What a model trout or the model trout 

population actually does during a simulation, as a result of executing the submodels.  

Cell. A model entity that is the basic unit of habitat in inSTREAM; habitat conditions vary 

among cells, but not within a cell. Cells are represented as irregular polygons.  

Dawn. The diel phase defined as the morning period when the sun is between 6° below the 

horizon and 6° above the horizon.  

Day. A 24-hour unit of time. Unless otherwise specified, a day is a calendar day, starting and 

ending at midnight. 

Daytime. The part of a simulated day when the sun is above the horizon by more than 6° (the 

angle defining dawn and dusk). 

Diel phase (or light phase, or simply phase). One time period (or one time step) defined by its 

light level; or the term used to describe the light level. The phases in inSTREAM 7 are night, 

dawn, daytime, and dusk.  

Drift feeding. The activity that represents classic “sit and wait” feeding on drifting food (e.g., 

Hughes 1992). 

Dusk. The diel phase defined as the evening period when the sun is descending from 6° above 

to 6° below the horizon.  

Escape cover. Places where trout can temporarily avoid detection or capture by a predator when 

using the drift or search feeding activity. Along with hiding cover and velocity shelter, one of 

three habitat characteristics modeled separately in inSTREAM that fit under the general term 

“cover” but in fact provide different functions (Allouche 2002). 

Eggs. Trout eggs are not represented explicitly in inSTREAM, but only via redd state variables. 

Therefore, when the model description mentions events that happen to eggs (e.g., x% of eggs 

die), it refers to events actually implemented as changes in the value of redd variables. 

Entity. Following the ODD convention, something represented in the model as a discrete object 

with its own state variables. Example entities include individual trout, redds, and cells. The term 

“kind of entity” refers to entities of the same type that use the same submodels; “trout” is a kind 

of entity, while each simulated trout is an entity.  
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Fish. A synonym for trout. 

Habitat and activity selection. The trout behavior of selecting which cell to occupy and which 

activity to use there, or the submodel that specifies how this decision is made. 

Hiding, hiding cover, hiding place. Terms used in inSTREAM 7 explicitly in reference to a 

long-term (one time step or more) behavior of remaining concealed from predators instead of 

feeding (this behavior is also referred to as “concealment”). Hiding is an activity that precludes 

feeding and reduces predation risk. Hiding cover is habitat that trout occupy when using the 

hiding activity, where they are relatively safe from predation while not having to swim. For 

terrestrial predation, hiding cover is modeled as discrete hiding places that each can be occupied 

by at most one individual. 

Initialization. The process of creating the model entities that are present at the start of a 

simulation and setting the values of their variables, before simulations start.  

Initialization data. Data (GIS files, lookup tables, parameters, etc.) that are used in 

initialization. 

Input data. Time-series input read and used to update conditions during simulations. Input data 

for inSTREAM 7 are time series of flow, temperature, and turbidity. 

Light phase. See diel phase, above. 

Model. In this document “model” refers to inSTREAM 7 in its entirety (e.g., “the model 

represents trout assemblages...”). 

Mortality source. A process (e.g., starvation, predation) that can cause trout or eggs to die. 

InSTREAM represents mortality sources as survival submodels. 

Night. The phase when simulated light levels are lowest, representing the last part of one day 

and beginning of the next. Night begins when the sun exceeds 6° below the horizon and ends 

when the sun reaches 6° below the horizon the next day. 

Observation, observer tools. The process of collecting data and information from the model; 

typical observations include graphical displays of habitat and fish over space and time and file 

output of summary statistics. Observer tools are software tools such as graphical user interfaces 

that make certain kinds of observation possible.  

Observer. The model entity that controls overall execution (a NetLogo term we adopt). Global 

variables are treated as state variables of the observer; global variables and observer variables 

are synonymous. Procedures that control the model software at the top level, e.g., by initializing 

the model and executing its schedule, are executed by the observer, so global procedures and 

observer procedures are synonymous.  

Parameter. A model variable meeting the conventions established in Sect. 2.2.2. Parameters are 

typically used as coefficients for the equations used in submodels. Contrast with state variable 

and parameter value.  
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Parameter value. A user-specified value for one of the model’s parameters. Parameter values 

are one kind of input, but not to be confused with input data or initialization data. 

Phase. See diel phase, above. 

Procedure. A module of the model’s software that encodes one submodel or part of a submodel. 

(This NetLogo term corresponds to software terms such as “method” or “subroutine”.) 

Reach. A habitat entity that represents a length of stream, and consists of a collection of cells. A 

reach typically corresponds to a field study site. 

Redd. A model entity that represents a redd (nest of eggs) created by a spawning trout and the 

eggs in it. 

Replicate. One of multiple models runs that represent the same scenario but use different 

pseudo-random number sequences that drive the model’s stochastic processes (Sect. 6.9). 

Replicates reveal the magnitude of variation in results due only to the model’s stochasticity. 

Scenario. A single, complete set of model input, including input data, initialization data, and 

parameter values. Each scenario typically represents one particular set of environmental 

conditions or one management alternative.  

Schedule. A description of the order in which events occur during a simulation: the schedule 

defines the actions and the rules for executing them. In an IBM’s software, the schedule is the 

code which defines actions and controls the order in which they are executed.  

Search feeding. The activity that represents feeding on stationary food by actively searching for 

it (e.g., Nakano et al. 1999). 

State variable. A measure of the status of a model entity (a trout, a habitat cell, the population) 

that is described using a single number or symbol. State variables may be static (constant over 

time, e.g., cell habitat characteristics read from initialization data) or dynamic (updated over time 

by model calculations).  

Submodel. A part of an IBM’s formulation that models one behavior or process, including 

processes executed only during initialization. Dividing inSTREAM into submodels allows each 

process to be modeled, calibrated, and tested separately. 

Superindividual. A trout entity that represents multiple real trout. The user can choose whether 

trout are represented as superindividuals from the time they emerge as new trout until they reach 

a specified size. 

Survival submodel. A submodel of a mortality source; it calculates a fish’s probability of 

surviving (or the survival probability of a redd’s eggs) for one particular kind of mortality for 

one day. 

Time step. A unit of model execution: one cycle through the model’s schedule. Each time step 

represents one diel phase. 
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Time step length. The amount of time represented by a particular time step. The time step 

length varies from step to step. 

Trout. The entities that represent individual trout after they have progressed from eggs into free-

swimming life stages. Except where explicitly noted otherwise, the term refers to simulated, not 

real, fish.  

Velocity shelter. Space within a cell that reduces the speed at which trout must swim while 

using the drift feeding activity. Velocity shelter is typically provided by obstacles to flow such 

as boulders. 

2.2 Conventions 
This subsection establishes conventions used throughout this document and the inSTREAM 7 

software. These conventions are very important for reducing the risk of error (e.g., due to 

incorrect units in equations or parameter values) and for facilitating model modifications and 

interpretation of output. 

2.2.1 Text formatting 

In this document we use text formatting to distinguish several model elements. Model variables 

are set in this variable font (italics). Variables treated as parameters are set in this parameter 

font (bold italics). Names of procedures in the model’s code and excerpts from the code are set 

in this code font. 

2.2.2 Parameters and parameter types 

Parameters are defined in ODD as equation coefficients, but it can be hard to define exactly 

which variables are and are not parameters. We define parameters as static variables with values 

that, in addition to not changing over time, do not differ among the entities (reaches, cells, trout 

of the same species) using them. Parameter values are set during model initialization. We define 

the following parameter types by which entities (as defined in Sect. 4.1) use the parameters: 

• Model parameters (also called observer parameters) are used by the observer and 

possibly other model entities. All entities use the same values of these parameters. 

• Reach parameters are used by habitat reaches and possibly by other entities (cells, trout, 

redds) in the reach. Each reach can have its own value of these parameters. Parameters 

used by cells are treated as reach parameters because all cells of a reach use the same 

values. 

• Trout parameters are used by trout and redds. Each trout species has its own values for 

trout parameters. 

Parameters used in the survival submodels (sects. 9.14 and 9.31) deserve clarification because 

many mortality sources depend on characteristics of both the fish (or redds) and their habitat. For 

simplicity, we use the convention that all parameters for survival submodels are trout parameters, 

with a few important exceptions. The two exceptions for trout survival are the two parameters 

driving the general intensity of predation by terrestrial animals (Sect. 9.18) and predation by fish 

(Sect. 9.19), which are reach parameters so that predation intensity can be varied among reaches. 

The exceptions for redd survival are parameters for redd scour (Sect. 9.35) that are also reach 

parameters because they depend on channel geometry and typically vary among reaches. 
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2.2.3 Units 

The inSTREAM 7 formulation and software consistently use these measurement units.  

Distance and length are in centimeters (cm), and, therefore, areas are in cm2, volumes in cm3, 

and velocities in cm per second (cm/s). There are three exceptions to this convention. Stream 

flow is in units of cubic meters per second (m3/s) because cm3/s is an unfamiliar and 

cumbersome unit. The habitat input that defines the size, location, and characteristics of cells are 

in GIS format (shapefiles) that use distances in meters (m; Sect. 7.2). The light units (defined 

below) do not follow this convention. However, all internal variables and outputs involving 

depth, velocity, area, or distance use length units of cm. 

Weight is in grams (g).  

Time is in days (d). For example, time step lengths typically have values such as 0.47 d. Keeping 

all time units in d simplifies survival calculations. (Flow and velocity variables are an exception.)  

Temperature is in Centigrade (°C).  

Energy in bioenergetic and growth calculations is in Joules (J). 

Light intensity is quantified as irradiance, in its standard units of W/m2 (equivalent to J/m2/s). 

Turbidity is in nephelometric turbidity units (NTU). 

Survival variables and parameters all are the probability of surviving for one day, unless a 

different time period is specifically stated. 

Fish lengths are fork lengths (cm).  

Fish and prey (food) weight variables use wet weight (g). 

2.2.4 Parameter and variable names 

In both this model description document and the model software, we use long, descriptive names 

for variables and parameters instead of following the mathematics tradition of using concise 

symbols. This convention is important because the large number of variables would make 

concise symbols cumbersome and difficult to distinguish, and because it lets us use the same 

variable names in both the formulation and software. 

Variable names follow the NetLogo convention of combining words with hyphens, and typically 

start with the kind of entity the variable or parameter belongs to, e.g., cell-velocity-shelter-area. 

However, in this document’s equations we use the C programming language convention for 

variable names (e.g., cellVelocityShelterArea) to avoid confusion between hyphens and minus 

signs. Hence, cell-velocity-shelter-area and cellVelocityShelterArea are the same variable. 

2.2.5 Mortality sources and survival submodels 

A number of processes can kill fish or fish eggs in inSTREAM. We refer to these processes as 

mortality sources, but the model represents mortality via survival probabilities: the unit of 

mortality risk is the probability of surviving the mortality source for one day. (The term 
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“mortality risk” is commonly used to mean the daily probability of dying, equal to one minus the 

survival probability.) 

Modeling mortality as a survival probability simplifies computations and reduces the chances of 

error. The probability of surviving several mortality sources is calculated simply by multiplying 

their separate survival probabilities. Likewise, the probability of surviving one kind of mortality 

for n days (even when n is a fraction of one day) is calculated by raising the daily survival 

probability to the power n. 

2.2.6 Dates and times 

The software for inSTREAM 7 uses a sophisticated date-time library that allows input and 

output, and internal date variables, to use actual dates and times (e.g., in M/d/yyyy H:mm 

format). Leap days are automatically included, so must appear in time series inputs. However, 

the software does not consider daylight savings time so any sub-daily input must represent 24 

hours in all days.  

The conventions used by the date-time code number hours 0-23 and minutes and seconds 0-59. 

2.2.7 Time step labeling in output 

The time steps in inSTREAM 7 each represent a fraction of one day, with starting and ending 

times that vary among days. Model output is labeled with a date and time, and light phase, for 

the time step at which it was produced.  

Time steps are labeled using conventions which, if not understood, can cause confusion in 

interpreting results. First, each model output (each line in an output file, or on the NetLogo 

interface) reports the model’s state at the end of a time step. The date and time used to label the 

time step is when the time step ends (the time at which the step started is therefore the time 

reported for the previous time step). The phase is the light condition that occurred throughout the 

time step.  

Therefore, the last of these output lines: 

10/1/2000 17:12 Phase: day 
10/1/2000 18:16 Phase: dusk 
10/2/2000 05:44 Phase: night 

was produced at the end of a time step that started at 18:16 on 1 October and ended at 5:44 on 2 

October, during which it was night. The middle line was produced at the end of a step that 

represented 17:12 to 18:16 on 1 October, when it was dusk. 

2.2.8 Fish ages and age classes 

InSTREAM uses the convention that fish are age 0 when born and have their age incremented at 

the start of each January 1. (However, if a simulation starts on January 1 the birthday is skipped.) 

In producing output, inSTREAM summarizes results by age classes (Sect. 12.2). We typically 

use three age classes (but the software makes it very easy to change the number of classes; Sect. 

14.1.5): 

• Age 0—fish that have not yet reached their first January 1. 

• Age 1—fish that have survived (as fish, not eggs) one January 1. 
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• Age 2+—any fish that have survived the January 1 of two or more years. 

2.2.9 Habitat units and distances; adjacent cells 

InSTREAM 7 uses a GIS-based format for depicting space. Cells are two-dimensional (in the 

horizontal plane) polygons that can have 3 or more sides. The X and Y coordinates used to 

define cell corners can be in any rectangular coordinate system, but follow conventions of the 

UTM system: coordinates are in meters, with X as the east-west dimension and X coordinates 

increasing from west to east, and Y increasing from south to north.  

NetLogo has a built-in grid space and inSTREAM 7 uses many NetLogo commands that 

calculate distances in NetLogo’s coordinate space. The built-in grid cells are called “patches” 

and NetLogo commands report distances in units of patch widths. InSTREAM uses an observer 

parameter world-resolution to convert NetLogo distances to cm: world-resolution is the number 

of cm represented by the width of a NetLogo patch, so NetLogo distances × world-resolution are 

actual distances in cm. 

Cell velocities are modeled as magnitudes without any direction.  

Important model processes depend on distances between cells (e.g., for finding all the cells 

within a fish’s habitat selection range). The distance between two cells is calculated as the 

straight-line distance between their centroids. Centroid locations are determined from the GIS 

shapefile that represents the cells, including cells from multiple stream reaches when multiple 

reaches are simulated (Sect. 13.2).  

The habitat and activity selection submodel (Sect. 9.13) assumes that even the smallest trout can 

always move at least to cells adjacent to their current cell. Cells adjacent to a starting cell are 

defined as those sharing at least one vertex (corner) or side with the starting cell1. 

2.2.10 Latitudes 

InSTREAM 7 calculates the length and mean sunlight irradiance of each time step as a function 

of latitude and date. The model does not accommodate latitudes south of the equator, nor polar 

latitudes so far north that some summer days have no night and some winter days have no 

daytime. (Southern latitudes could be accommodated with a minor change to the day length 

submodel. Application to polar latitudes would require modification of the step timing submodel, 

e.g., by using an alternative definition of twilight, and revision of how time steps are defined; 

Sect. 9.6.) 

2.2.11 Logistic functions and their parameters 

The survival submodels and other submodels make extensive use of logistic functions, which are 

often useful for representing relations that vary nonlinearly between 0 and 1. The Y value of a 

logistic function ranges between zero to one as the X value varies over any range. In 

inSTREAM, logistic functions are defined via parameters that specify two points X1 and X9: the 

X values at which the Y value equals 0.1 and 0.9. These parameters typically have names that 

refer to the function, the X variable driving it, and whether they correspond to Y = 0.1 or Y = 

0.9; for example, mort-fish-pred-D1 and mort-fish-pred-D9 are the parameters defining the 

 
1 The code identifying adjacent cells is in the procedure build-cells. 



 

31 

 

depths (“D”) at which a logistic function relating survival of fish predation to depth has values of 

0.1 and 0.9. (Note X variables typically quantify characteristics of the habitat or of individual 

fish.) 

 

The equation for a logistic function is: 

𝑌 =
𝑒𝑥𝑝(𝑍)

1.0 + 𝑒𝑥𝑝(𝑍)
 

where, in inSTREAM, Z is calculated from the function’s two parameters using the method in 

Sect. 16.4.1 of Railsback and Grimm (2019)2. For inSTREAM’s conventions, Z is calculated as:  

𝑍 = 𝑒𝑥𝑝(𝐴 + (𝐵 × 𝑋)) 

where B = -4.3944 / (X1 – X9) and A = -2.1972 – (B × X1). 

Because of the exp() function in the equation for Y, logistic functions are particularly vulnerable 

to variable overflow/underflow errors, which occur when the computer tries to produce a 

floating-point number outside the range it can handle correctly. This range depends on the 

software platform and sometimes the hardware. To avoid these errors while providing the 

important ability to evaluate logistic functions over a wide range, inSTREAM 7 sets Y to 1.0 

when Z is greater than 35 (corresponding to Y = 0.9999999999999993 in NetLogo 6.x) and sets 

Y to 0.0 when Z is less than -200 (corresponding to Y = 1.4E-87)3. 

 

 
2 Logistic functions are initialized from parameters in procedure create-logistic-with-table-and-params. 

Their values are calculated in the procedure evaluate-logistic. 

3 These limits on Z are programmed in evaluate-logistic. Version 6.0.x of NetLogo can actually handle Z 

values between -745 and +709, regardless of the computer hardware. NetLogo raises an overflow error and halts 

if Z is above 709, but sets the result to 0.0 if Z is less than -745. 
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Part II: Model Description 

3 ODD Element 1: Purpose and Patterns 
This model description follows the ODD protocol (Grimm et al. 2006, 2010, 2020), a widely 

used format for describing IBMs. The first three sections (3 through 5) provide an overview of 

inSTREAM 7. Sect. 6 describes the model’s conceptual basis using 11 standard design concepts. 

Sections 7 through 9 provide full details of inSTREAM’s initialization, input data, and 

submodels. 

3.1 Model purposes 
The primary purpose of inSTREAM is to model, for understanding and prediction, the effects of 

river management actions on stream salmonid populations and assemblages of sympatric 

salmonid species. It is designed to predict the population consequences of specific management 

actions such as changes in flow regime, but also—often more importantly—as a framework for 

thinking about and studying the many ways that channel shape, physical habitat, flow, 

temperature, turbidity, and biological conditions affect salmonid populations.  

The model’s original purpose is as an instream flow assessment tool, for evaluating alternative 

flow and temperature regimes. This purpose specifically includes representing the complex 

interactions between flow and temperature that may be well-understood at the individual level 

but challenging to understand (e.g., Xu et al. 2010), much less predict, at the population level 

using field studies alone.  

InSTREAM has also been used to evaluate other river management actions including changes in 

turbidity regimes, physical habitat modification or restoration, and alteration of biological 

conditions such as by introducing or eradicating species, modifying food production, or changing 

the kinds or intensity of predation. InSTREAM has also proven useful for assessing effects of 

large-scale processes that affect streams, such as climate change. 

The model’s purpose includes evaluating effects of river management on reproductive life 

stages, including spawning and egg incubation. Spawning and incubation are included in 

inSTREAM to allow such evaluation and to allow population simulations to be much longer than 

the life span of individual fish.  

Because of its mechanistic nature, inSTREAM has also proven useful as a virtual ecosystem in 

which controlled experiments can address more fundamental ecological questions such as how 

adaptive behavior interacts with habitat and competition to drive population and community 

dynamics. InSTREAM can be considered a community and ecosystem model in the sense that it 

can represent multiple competing species of trout, and in the sense that it represents trophic 

interactions among trout populations, their prey, and their predators (Railsback and Harvey 

2013). 

3.2 Patterns used to design and evaluate the model 
This section of the ODD protocol identifies characteristic patterns that have been observed in 

real systems and then used to design and evaluate the model. These patterns are “characteristic” 

in the sense that they are believed to be driven by the same mechanisms that we believe are 
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important for the model’s purposes: reproducing these patterns makes us more confident that the 

model is useful for its purposes. Previous versions of inSTREAM were evaluated using a variety 

of patterns that we also considered (but not explicitly, in a documented way) in designing 

inSTREAM 7. We used other patterns explicitly, to evaluate the theory used for habitat and 

activity selection behavior (Sect. 9.13). Unless noted otherwise, all the patterns apply to 

swimming life stages of stream salmonids in general, regardless of species and size. 

3.2.1 Patterns driven by habitat selection 

These patterns were documented and used by Railsback and Harvey (2002) to evaluate the 

theoretical approach used to model habitat selection in inSTREAM.  

1. Hierarchical feeding: there is a consistent preference for specific feeding sites, dominant 

individuals displace others from the most preferred sites, and subdominant individuals 

occupy preferred sites when the dominant fish are removed from them. 

2. Response to high flows: Trout move to stream margins during high flows and then return 

to previous feeding sites as flows recede. 

3. Response to a larger competing species: The introduction of larger competitors causes 

juvenile trout to shift habitat, often toward higher velocities. 

4. Response to predatory fish: When large trout are present, juvenile trout use shallower 

habitat on average than they do in the absence of large trout. 

5. Variation in velocity preference with season: Seasonal variation in temperature and day 

length result in changes in habitat use, especially use of higher velocities at higher 

temperatures. 

6. Changes in habitat use with food availability and energy reserves: Trout shift to higher-

growth but riskier habitat when food availability or their energy reserves decline. 

3.2.2 Patterns used to evaluate population dynamics 

These patterns were documented and used by Railsback et al. (2002) to evaluate the population 

dynamics of an early version of inSTREAM. 

7. A “self-thinning” relation: The log-log relation between mean individual weight and 

abundance, across age classes, is linear with a slope near -4/3.  

8. A “critical survival time”: There is a period of intense, density-dependent mortality in 

newly hatched trout. 

9. Unstable population dynamics: Even in relatively simple and undisturbed streams, adult 

trout abundance can be highly variable from year to year. 

10. Density dependence in growth: At least some populations exhibit strong density-

dependence in growth of age 0 trout (e.g., Imre et al. 2010). 

11. Effects of pools on large adults: Removing deep pool habitat reduces the abundance of 

large, old trout. 

3.2.3 Patterns driven by diel habitat and activity selection 

The third set of patterns were documented and used by Railsback et al. (2005) to evaluate the 

ability of inSTREAM version 3 to simulate how trout select both activity (feeding vs. hiding) 

and habitat during both daytime and night. 
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12. Individual variation in diel activity: Even within a population and age class, individuals 

differ in whether they feed during daytime or night. 

13. Nocturnal feeding in slower velocities: On average, trout feeding at night use shallower 

and slower water than those feeding during the day. 

14. Higher local densities at night: On average, trout feeding at night feed closer together 

than those feeding in daytime. 

15. Less nocturnal feeding at high temperature: There is a negative relation between stream 

temperature and the fraction of feeding that occurs at night. 

16. Effects of life history stage on activity pattern: Life stages (and individuals) with higher 

fitness motivation for energy acquisition, such as juveniles and adults recovering from 

spawning, on average feed more during the daytime than do other life stages. 

17. Competition increases daytime feeding: More intense competition can cause individual 

trout to shift from feeding at night to daytime. 

18. More daytime feeding when food availability or fish condition is low: As food 

availability or fish body condition decreases, feeding activity shifts from night to 

daytime. 

19. Diel activity patterns depend on habitat: Habitat conditions such as flow and the 

availability of hiding cover can strongly affect the amount of feeding during daytime vs. 

night. 

3.2.4 Patterns used to evaluate inSTREAM 7 

Railsback et al. (2020) used seven patterns to evaluate the habitat and activity selection method 

of inSTREAM 7, along with several alternative methods. These patterns are similar to some of 

the preceding ones except for considering dawn and dusk as well as day and night.  

20. More daytime feeding when food availability or fish condition is low. 

21. More daytime and crepuscular feeding at higher temperatures. 

22. Feedbacks of competition on circadian foraging patterns: the percentage of trout feeding 

in each light phase varies with trout density. 

23. Foraging patterns are affected by circadian cycles in food availability: if drift food 

becomes more available in, e.g., crepuscular phases, then feeding activity in those phases 

increases. 

24. Less daytime foraging under higher predation risk. 

25. Foraging patterns are affected by physical habitat conditions (e.g., flow regime). 

26. Foraging patterns vary with day length. 

4 ODD Element 2: Entities, State Variables, and Scales 

4.1 Entities and state variables 
This element of ODD summarizes the model’s structure by listing the kinds of entities in it and 

their state variables, as defined in Sect. 2.1. We include only primary state variables and not 

secondary variables that can be calculated from the primary ones. InSTREAM 7 has five kinds of 

entities. 

(Some previous versions of inSTREAM also included barriers, habitat entities representing 

features such as cascades, weirs, or culverts that limit the ability of fish to move up- and 
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downstream. This capability allowed analysis of barrier effects on population persistence and 

distribution, e.g., Harvey and Railsback 2012, 2021. Barriers have not yet been implemented in 

inSTREAM 7; users interested in including barriers should check the inSTREAM web site for 

updates and contact us about implementing them.) 

In this section, state variables are listed and defined very briefly. Detailed explanation of state 

variables—e.g., exactly what they represent, where their values come from, methods for their 

evaluation in the field, etc.—are in the descriptions of the submodels that use them (Sect. 9) and 

can be found by searching this document for the variable name or using its index. 

4.1.1 The observer 

The observer is a single entity that controls the global variables and global submodels4. Observer 

state variables (Table 1) are global variables that change over time. (Static observer variables, 

because they do not change over simulated time, are considered parameters and defined with the 

submodels that use them.) 

Table 1: Observer state variables 

Variable name Variable type and units Meaning 

sim-time Date-time (date and time variables 

include a calendar date and time 

of day, e.g., 28 March 2019 14:20) 

The date and time at the end of the 

current time step. 

prev-time Date-time The date and time at the start of the 

current time step (and therefore at the 

end of the previous time step). 

step-length Real number, d The length (in fraction of a day) of 

the current time step: the difference 

between sim-time and prev-time. 

day-length Real number, d The length of daytime (when the sun 

is above the horizon) for the current 

day; this is not the length of the day 

phase. 

twilight-length Real number, d The length of one of the two civil 

twilight periods (dawn or dusk; when 

the sun is between 0 and 6° below the 

horizon); not the length of the dawn 

or dusk phases. 

light-phase Text equal to “night”, “dawn”, 

“day”, or “dusk” 

The diel phase of the current time 

step. 

daily-step-length-

list 

List of real numbers, d A list of the lengths of the previous 

time steps in the 1.0 d period that 

ends at sim-time. 

 
4 Observer variables are defined in the globals statement at the start of the code. 
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Variable name Variable type and units Meaning 

sunlight-irradiance Real number, W/m2 Mean sunlight irradiance at the water 

surface for the time step. 

 

4.1.2 Reaches 

A reach is a habitat entity that represents a continuous section of stream or river; the habitat 

within a reach is represented as a collection of cells (Sect. 4.1.3)5. InSTREAM 7 can represent 

one or more reaches. Reach state variables (Table 2) therefore represent intermediate-scale 

habitat conditions that vary among reaches but not among the cells within a reach. Static reach 

variables are treated as parameters and defined with the submodels that use them.  

 

 

Figure 2: A reach and its cells. 

 

Table 2: Reach state variables 

Variable name Variable type and 

units 

Meaning 

Flow Real; m3/s The current stream flow. 

Temperature Real; °C The current temperature. 

Turbidity Real; NTU The current turbidity. 

pisciv-trout-

density 

Real; trout/cm2 The density of trout large enough to prey on other trout 

(Sect. 9.19.5). 

 

 
5 Reach variables are defined in the code statement reaches-own, near the top of the code. 
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4.1.3 Cells 

Cells are the lowest-level habitat entities; habitat variation within a cell is not represented except 

via cell variables such as the fraction of the cell providing velocity shelter6. Each cell represents 

a two-dimensional polygon in the horizontal plane. Most habitat characteristics are represented 

as cell state variables (Table 3). Because they vary in value among the many cells, static cell 

variables are treated as state variables instead of as parameters.  

Table 3: Cell state variables 

Variable name Variable type 

and units 

Meaning 

xcor, ycor (the software uses 

NetLogo’s built-in coordinate 

variables) 

Real, static; 

patch-widths. 

The X and Y coordinates of the cell’s centroid, 

converted to cm units by multiplying by 

world-resolution. 

cell-area Real, static; 

cm2 

The cell’s area. 

cell-depth Real, dynamic; 

cm 

The cell’s current depth; 0.0 if the cell is not 

submerged at the current flow. 

cell-velocity Real, dynamic; 

cm/s 

The current water velocity; 0.0 when the cell 

is not submerged. 

cell-light Real, dynamic; 

W/m2 

The current irradiance at half of the cell’s 

depth, or surface irradiance when the cell is 

not submerged. 

cell-num-hiding-places Integer, static; 

unitless 

The number of places that each provide an 

isolated hiding place for one adult trout. 

cell-escape-dist Real, static; 

cm 

A characteristic distance that a fish in the cell 

would have to move to enter escape cover. 

cell-frac-vel-shelter Real, static; 

unitless 

The fraction of cell area providing velocity 

shelter for drift-feeding trout. 

cell-frac-spawn Real, static; 

unitless 

The fraction of cell area providing substrate 

suitable for trout spawning. 

cell-available-drift Real, dynamic; 

g/d 

The currently unconsumed drift food in the 

cell, expressed as a constant rate of food 

production. 

cell-available-search Real, dynamic; 

g/d 

The currently unconsumed search food in the 

cell, expressed as a constant rate of food 

production. 

 
6 Cell variables are defined in the cells-own statement near the beginning of the code. Cell-depth, cell-velocity, 

and cell-light are coded as the patch variables depth, velocity, and light so they can be displayed in the graphical 

interface. 
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Variable name Variable type 

and units 

Meaning 

cell-available-vel-shelter Real, dynamic; 

cm2 

The currently unoccupied velocity shelter 

area. 

cell-available-hiding-places Integer, 

dynamic; 

unitless 

The number of hiding places currently 

unoccupied by hiding trout. 

 

4.1.4 Trout 

InSTREAM represents the trout life cycle using only two kinds of entity, redds and trout. The 

trout entities represent individual trout from the time of emergence. (Here, “emergence” means 

the process of an egg developing into a juvenile trout that leaves the redd and enters the water 

column.) Trout characteristics are represented by the state variables in Table 4. Trout location is 

represented as the cell occupied by the trout: model trout do not have coordinates in model space 

but instead have a variable for which cell they occupy7. 

The model can represent an unlimited number of trout species, with species a state variable of 

trout. Species can differ from each other by using different trout parameter values but (without 

custom software modifications) all species use the same assumptions, equations, and submodels. 

Model trout can optionally represent “superindividuals”: agents that each represent a number of 

identical trout (see Sect. 7.9 of Grimm and Railsback 2005). Superindividuals are implemented 

for computational efficiency: they can reduce the number of model trout needed to represent the 

sometimes large numbers of newly emerged juveniles. Trout can be represented as 

superindividuals from the time they emerge (Sect. 9.38) until they reach a size at which they are 

turned into multiple individual trout (Sect. 9.39). The trout variable trout-superind-rep 

determines whether a simulated trout is a superindividual: this variable is the number of trout 

represented by the model entity and has a value of 1 for normal trout.  

Table 4: Trout state variables 

Variable name Variable type and units Meaning 

trout-species Text, static The trout’s species. 

trout-sex Text equal to “female” or 

“male”; static 

The trout’s gender. 

trout-age Integer, dynamic; years Age, incremented by 1 each January 1 after 

the trout is created. 

trout-length Real, dynamic; cm Length as fork length. 

trout-weight Real, dynamic; g Wet weigh. 

 
7 Trout variables are defined in the trout-own statement near the beginning of the code. The location variable 

trout-cell does not actually exist in the code because NetLogo lets trout instead use the variable patches-cell of 

the patch they are on. 
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Variable name Variable type and units Meaning 

trout-condition Real, dynamic; unitless Ratio (0-1) of the trout’s weight to the 

weight of a healthy trout of the same length. 

trout-max-speed Real, dynamic; cm/s Maximum sustainable swimming speed. 

trout-activity Text equal to “drift”, 

“search”, or “hide”; dynamic 

The trout’s selected activity on the current 

time step. 

trout-cell Cell; dynamic The cell that the trout currently occupies. 

trout-superind-

rep 

Integer; static The number of trout represented by the 

model trout entity. 

trout-spawned-

this-season?  

Boolean; dynamic TRUE if the trout has spawned since the 

start of the current spawning season. 

consumption-

memory-list 

List of real numbers, 

dynamic; g 

A list of the food consumption the trout 

experienced during the previous time steps 

of the current 1.0-d period. 

growth-memory-

list 

List of real numbers, 

dynamic; g/d 

A list of the growth rates the trout 

experienced during the previous time steps 

of the current 1.0-d period. 

survival-memory-

list 

List of real numbers, 

dynamic; survival 

probabilities per time step 

A list of the survival probabilities 

experienced during the previous time steps 

of the current day. 

 

4.1.5 Redds 

Redd entities each represent a nest of eggs produced when a female trout spawns8. InSTREAM 

models the egg and alevin life stages of trout simply as state variables of redds (Table 5). Some 

important characteristics of redds (e.g., the depth they are buried; their area) are assumed not to 

vary among redds of the same species, and so are treated as parameters instead of state variables 

and defined with the relevant submodels. 

 
8 Redd variables are defined in the redds-own statement near the beginning of the code. Redds, like trout, can 

also use the variables of the patch they are on. 
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Table 5: Redd state variables 

Variable name Variable type and units   Meaning 

redd-species Text, static The redd’s species. 

redd-num-eggs Integer, dynamic; unitless The number of viable eggs in the redd. 

redd-frac-developed Real, dynamic; unitless The fraction (0-1) that the redd is of being 

fully developed; the redd starts turning 

eggs into new trout when this variable 

reaches 1.0. 

redd-emerge-days Integer, dynamic; d The number of days that new trout have 

been emerging from the redd. 

 

4.2 Model scales 

4.2.1 Spatial resolution and extent 

The spatial resolution of inSTREAM 7 refers to cell size and shape, and spatial extent refers to 

how much stream area is represented. User input entirely determines these critical characteristics 

of the model, so users must understand how cell size and spatial extent affect simulations. Here 

we simply describe typical spatial scales and identify potential effects of spatial resolution on 

model results. We provide specific guidance on the number and size of reaches to use in Sect. 19, 

and on selecting cell sizes and shapes in Sect. 22. 

InSTREAM is designed to represent a wide range of spatial extents; our applications have ranged 

from modeling relatively short reaches of streams < 1 m across to representing many kilometers 

of rivers tens of meters wide. While the time needed to complete simulations increases with the 

amount of habitat included, the probability of extinction may become an issue for simulations of 

limited spatial extent.   

Cell sizes also have lower limits, because small cells can cause simulation artifacts. The main 

factor we consider for cell size is that cells must be at least as large as the feeding territory of an 

adult trout (or a superindividual representing multiple small trout; Sect. 4.1.4); otherwise, the 

model’s method of representing food availability and competition (Sect. 9.11.2) will cause cells 

to provide low fitness only as an artifact of their small size. Stream habitat modelers sometimes 

assume that finer resolution is always better because of the need to capture hydraulic features 

such as velocity shelters behind rocks; this is not the case with inSTREAM. Fine-scale hydraulic 

features such as velocity shelter are instead represented as variables of the cells, so they need not 

be represented as differences among small cells.  

While cells can be too small, there is no clear upper limit on cell size except for the need to 

capture the site’s variation in habitat. The food availability and competition methods potentially 

can introduce an artifact of large cell sizes: aggregating space into fewer but larger cells can 

increase the number of large trout that the space can support while decreasing the area with food 

enough for small, but not large, trout. (A small cell may have enough food for only one large 

trout, with enough left over for 1-2 juvenile trout. A cell 4 times larger may support 5-6 large 
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trout and still only 1-2 juveniles.) One experiment varying cell size in an earlier version of 

inSTREAM (Butcher and Parrish 2006) indicated that this artifact was not strong.  

A second potential artifact of cell size concerns the distance over which small trout can select 

habitat. The habitat and activity selection submodel (Sect. 9.13) assumes that trout evaluate and 

potentially move to cells within a radius that increases with trout length, but trout can always 

evaluate adjacent cells. Using fewer, larger cells means that adjacent cells can be bigger, 

effectively increasing the distance that small trout can move; on the other hand, using smaller 

cells tends to give small trout more cells to choose from. 

Computer resources are another potential consideration for cell size; memory use and execution 

time increase with the number of cells, so using large numbers of unnecessarily small cells can 

be a computational burden. 

Considering these effects of cell size, we recommend use of cells as small as—but not smaller 

than—necessary to capture important gradients in habitat characteristics like depth, velocity, and 

velocity shelter. Cells smaller than ~1 m2 should be avoided, and we recommend breaking up 

very large cells (e.g., making up >50% of channel width) into several smaller cells. Sharp local 

gradients in velocity that provide velocity shelter can generally be represented via the cell’s 

variable cell-frac-vel-shelter, not as separate cells. 

4.2.2 Temporal resolution and extent 

Temporal resolution and extent refer to time step lengths and how much total time is represented 

in a model run. User input partially determines temporal resolution and extent, so users must 

understand the range of possibilities and their consequences. 

4.2.2.1 Time steps 

The use of four time steps per day is a major change in inSTREAM 7; previous versions 

represented only one daytime step per day, or two representing daytime and night. InSTREAM 7 

has separate time steps representing the four diel phases (dawn, daytime, dusk, and night) 

defined in Sect. 2.1. (Alternative versions of inSTREAM 7 that let time steps also be triggered 

by events such as within-day changes in flow or temperature are available.) 

The step timing submodel (Sect. 9.6) calculates the starting time of each time step as a function 

of date and site latitude. Therefore, the time steps change each simulated day. 

4.2.2.2 Model run duration 

The observer parameters start-date and end-date specify the temporal extent of a model run. 

Simulations start with a time step representing the time from midnight to dawn of the day 

specified by start-date, and end with the first time step (typically night) that ends after the day 

specified by end-date. 

An appropriate duration of an inSTREAM run depends on the purpose of the model application. 

For assessment of flow, temperature, or turbidity regimes, runs should be long enough to include 

key characteristics of the alternative regimes, such as differences in seasonal means and in the 

frequency and magnitude of extreme events. We often use runs of 10-50 years for such purposes. 

For analyses of population viability—how the risk of local extinction varies among input 

scenarios—longer runs are appropriate. We have used runs of, e.g., 100 years for these analyses, 



 

42 

 

which often requires synthesizing some of the time series input data because historic data are 

rarely available for such long periods. 

Sometimes simulation studies focus on particular life stages or seasons, such as assessments of 

how alternative channel restoration designs affect spawning success or juvenile survival and 

growth. For such short-term objectives, individual seasons or years can be simulated. If the 

model is re-initialized each run, then short simulations of different years (e.g., spawning through 

1 October) are independent and can be treated as replicates for analysis. 

5 ODD Element 3: Process Overview and Scheduling 
This section describes the model’s schedule, the sequence of actions executed each time step9. 

The schedule is also a summary of the entire model. For each action in the schedule, we describe 

which entities execute which submodel or submodels, and why actions are scheduled in the order 

they are. ODD element 7 (Sect. 9) fully describes the submodels.  

Describing each action includes specifying the order in which the model entities execute the 

action: for example, when trout select habitat and deplete the resources in the cell they select, the 

order in which trout execute habitat selection can have a strong effect on results. However, many 

actions do not include interaction among entities so the order in which entities execute does not 

matter. If the execution order is not specified below, then execution order has no effect and the 

action uses NetLogo’s default, which is to randomize the order in which entities execute each 

time the action is executed. 

Update actions. These actions are executed first because they set the new habitat conditions that 

trout then respond to.  

Time updates10. The observer updates time variables. At the first time step of a day, the day 

length (Sect. 9.5) and step timing (Sect. 9.6) submodels determine the start times of the new 

day’s time steps. The simulation time submodel (Sect. 9.7) advances the value of sim-time to the 

next such time and updates the values of light-phase and step-length accordingly. If the date for 

the new value of sim-time is after the model parameter end-date, the simulation stops. 

Habitat updates11. The observer updates habitat variables, using the habitat update submodel 

(Sect. 9.8). Reach-specific values of flow, temperature, and turbidity for the current time are read 

from input data. The depth and velocity of each cell are updated using the hydraulics submodel 

(Sect. 9.3). The surface light irradiance sunlight-irradiance is updated using the surface light 

submodel (Sect. 9.9). The light in each cell is updated using the cell light submodel (Sect. 9.10). 

Depletable cell resources are reset to undepleted values using the cell resource depletion 

submodel (Sect. 9.11). 

Trout updates12. Each trout updates the memory list variables it uses in the habitat and activity 

selection submodel. This update is defined in the trout memory submodel (Sect. 9.12). If the 

current time step ends in a new calendar year (the year of sim-time is greater than the year of 

prev-time), then the age of all trout (trout-age) is incremented by 1 year. 

 
9 Following NetLogo convention, the schedule is programmed in the go procedure. 

10 The time updates action is programmed in the procedure update-time-and-habitat. 

11 The habitat updates action is programmed in update-habitat. 

12 The trout updates action is programmed in update-trout and update-trout-memories. 
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Trout habitat and activity selection, survival, and growth action. Each trout executes three 

submodels that represent their adaptation to current conditions and the resulting survival and 

growth. Each trout executes the three actions before the next trout executes. Trout execute this 

action in descending order of length (longest to shortest) to represent the size-based dominance 

hierarchy commonly observed in stream salmonids (e.g., Hughes 1992; Young 2003). When 

multiple trout have the same length, as when superindividuals are first separated into individual 

trout (Sect. 9.39), their order is randomized. The three submodels in this action are: 

Habitat and activity selection. The trout decides whether to feed or hide, and which cell to 

occupy (Sect. 9.13). This submodel is first because trout use it to adapt to new habitat conditions. 

Survival. The trout determines its probability of surviving six mortality sources, and then 

determines whether it survives each by using a random Bernoulli trial (which reports true or 

false, with the probability of true equaling the survival probability weighted by the length of the 

time step). Survival is scheduled before the growth action so that survival probabilities are 

calculated using the same fish variable values used for habitat and activity selection. (This 

scheduling means that growth on the current time step does not affect survival of starvation and 

disease.) The trout survival submodel (Sect. 9.14) details the overall action, but each mortality 

source has its own submodel. The order in which the survival of each mortality sources is 

executed could affect how many trout die of which kind of mortality, but this effect is expected 

to be small and the order is essential arbitrary. Mortality sources are evaluated in the following 

order: 

High temperature acute stress (Sect. 9.15), 

Stranding (Sect. 9.16), 

Starvation and disease due to low condition (Sect. 9.17), 

Predation by terrestrial animals (Sect. 9.18), and 

Predation by fish (Sect. 9.19). 

Growth. The trout updates its length and weight (Sect. 9.20). 

Trout spawning action. This action is only executed once per day, on the first time step in 

daytime. All female trout use the spawning readiness submodel (Sect. 9.27) to determine whether 

they are ready to spawn, using criteria that consider habitat conditions, the date, and trout size, 

age, and condition. If a trout is ready to spawn, it does so by creating a new redd, possibly 

causing superimposition mortality on any other redds in the same cell, and incurring weight loss, 

according to the spawning submodel (Sect.9.28). This action is executed by female trout in 

descending order of length (longest to shortest) to represent a size-based dominance hierarchy in 

competition for spawning sites and mates.  

Redd actions. Each redd action is executed by all redds before the next action is started. Because 

redd actions are scheduled after trout actions, new trout created by redds do not execute the trout 

actions on the time step they are created. This scheduling also means that new redds execute all 

the redd actions on the time step they are created.  

Redd survival. The redd’s value of redd-num-eggs is updated by determining how many of the 

redd’s eggs survive each of several redd mortality sources, using the redd survival submodel 

(Sect. 9.31). The redd mortality sources, each with its own submodel, determine the probability 
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of an egg surviving the mortality source for one day. For each mortality source, the value of 

redd-num-eggs is updated by setting it to a random draw from a binomial distribution (which 

models the integer number of true events in a certain number of independent trials, each with the 

same probability of being true) with redd-num-eggs trials and the probability of true equal to the 

survival probability weighted by time step length. The redd mortality sources are executed in the 

following order: 

Low temperature (Sect. 9.32), 

High temperature (Sect. 9.33), 

Dewatering (Sect. 9.34), and 

Scour (Sect. 9.35). 

Redd development. The redd’s value of redd-frac-developed is updated by an amount that 

depends on the temperature of redd’s reach, as defined in the redd development submodel (Sect. 

9.37). When redd-frac-developed reaches 1.0, the redd is considered fully developed, meaning 

that its surviving eggs are ready to emerge. 

Redd emergence. This action is executed only once per day, on the first time step in daytime. 

Each fully developed redd converts some or all of its eggs into new trout, using the redd 

emergence submodel (Sect. 9.38). The number of eggs that “emerge” into new trout is a fraction 

of redd-num-eggs that increases over time, so that emergence from a redd is spread over several 

days in a humped distribution. The value of redd-num-eggs is reduced by the number of eggs that 

emerge, and the redd is removed from the model when redd-num-eggs reaches zero. For each 

emerging egg, a new trout is created and initialized using methods described in the redd 

emergence submodel. (Optionally, superindividuals that each represent multiple trout can be 

created, reducing the number of new trout entities.) 

Output action. The output action is executed by the observer13. It is the last action in the 

schedule, so outputs reflect the state of the model at the end of the time step. The graphical 

interface is updated to display cells shaded by depth, velocity, or light; and the locations of trout 

and redds. Output files are updated. (The inSTREAM 7 software allows the user to schedule 

output file updates less frequently than every time step; Sect. 14.1.5.) 

6 ODD Element 4: Design Concepts 
This ODD element describes how the model implements 11 concepts of individual-based model 

design. These concepts are intended to capture key characteristics of individual-based models not 

easily described using conventional tools such as equations or flow charts.  

6.1 Basic principles 
InSTREAM was developed largely to supplant a firmly established basic principle, the idea that 

population and community effects of habitat alteration can be understood via habitat selection 

modeling. Specifically, inSTREAM was designed largely to overcome the limitations of the 

PHABSIM habitat selection model. The usefulness of habitat selection modeling has been 

challenged in river management ecology (Railsback et al. 2003; Railsback 2000, 2016) and in 

 
13 Output updates are programmed in the update-output procedure.  
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management ecology as a whole (e.g., Garshelis 2000; Johnson 2007). InSTREAM and its 

predecessors were designed to offer a different basic principle, the use of individual-based 

models that capture the most important mechanisms through which river management affects 

fish populations and assemblages.  

InSTREAM 7 is largely a collection of existing models and modeling concepts assembled into a 

full-life-cycle population model. These models and concepts include: (1) conceptual and 

computation models of drift feeding (Sect. 9.22); (2) energy balance or “bioenergetic” models 

that relate growth, food intake, activity, and temperature (Sect. 9.21); and (3) redd development 

models (Sect. 9.37).  

The approach used to model habitat and activity selection in inSTREAM (see Adaptation and 

Objectives, below) has been developed into a general approach to modeling adaptive tradeoff 

decisions in IBMs, called State- and Prediction-based Theory (Railsback and Harvey 2013, 

2020). That approach is a modification of the general fitness maximization concept long used in 

behavioral ecology (e.g., Houston and McNamara 1999; Mangel and Clark 1986). 

6.2 Emergence 
All the primary outputs of inSTREAM (e.g., population abundance and biomass, persistence, age 

and size distributions) emerge from the model’s mechanistic interactions among channel shape 

and physical habitat characteristics, food availability, the time-series inputs (flow, temperature, 

turbidity), and how fish physiology and behavior are modeled. Only a few of the model’s 

intermediate outcomes are closely imposed by simple mechanisms and hence easily predicted; 

the most important of these is egg incubation time, which is determined from the temperature 

regime in a relatively simple way (Sect. 9.37). 

6.3 Adaptation 
Trout in inSTREAM have two adaptive behaviors: selecting habitat and activity each time step, 

and deciding when and where to spawn. Habitat and activity selection (Sect. 9.13) is modeled as 

direct objective-seeking: trout make this decision to maximize an objective function (outlined 

below) that is an explicit measure of their expected future fitness. In contrast, spawning behavior 

is modeled as indirect objective-seeking: inSTREAM uses algorithms and parameters that cause 

trout to reproduce spawning behavior of real trout instead of representing how the behavior 

affects expected fitness. 

6.4 Objectives 
The habitat and activity selection submodel (Sect. 9.13) assumes that trout select the 

combination of habitat cell and activity (whether to hide or feed, and which of the two feeding 

strategies to use) that maximizes an objective function, typically called a fitness measure in 

ecology. The fitness measure explicitly represents a trout’s expected probability of surviving all 

kinds of mortality, including starvation, over a sliding time horizon: the next n days into the 

future. The time horizon is a trout parameter (trout-fitness-horizon) with a standard value of 60 

days, which forces the trout to balance predation risk against the need to feed: starvation 

becomes a high risk over 60 days if a trout chooses only to hide. The fitness measure considers 

not just the habitat and activity chosen on the current time step but the combination of activities 

chosen over a full day. 
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6.5 Learning 
InSTREAM 7 does not represent learning. (The decisions made by trout depend on their 

previous experience but trout do not change how they make decisions as a consequence of their 

experience.) 

6.6 Prediction 
The habitat and activity selection submodel assumes trout base their decisions on explicit 

predictions of future habitat and competition conditions. The predictions are extremely simple: 

trout assume that conditions such as physical habitat, food availability, and predation risk over 

the fitness time horizon will be the same, over the time steps of a full day (dawn, day, dusk, 

night), as they have been over the 1.0-d period that ends at the end of the current time step. In 

other words, trout base their decisions on the prediction that conditions experienced on the 

current day will persist over the entire time horizon. Such simple predictions can be remarkably 

good at producing successful adaptive behavior (Railsback and Harvey 2020). 

6.7 Sensing 
Both the habitat and activity selection and spawning behavior submodels assume that trout select 

cells from those within a specific radius, and that they can sense habitat and competition 

conditions in those cells (Sect. 9.13.1). This habitat selection radius increases with the trout’s 

length. For cells within the radius, trout are assumed able to sense, without uncertainty or error, 

all cell variables including those representing physical habitat and the availability of resources 

subject to competition: food, velocity shelter, and hiding places. Trout do not sense anything 

about cells or habitat outside that radius. The sensing assumptions are based on observations 

(e.g., Harvey et al. 1999) that salmonids commonly spend at least small amounts of time 

exploring and frequently alternate among locations in a non-random way; and we assume that the 

ability to explore increases with swimming ability as trout grow. 

6.8 Interaction 
InSTREAM has strong interactions among individual trout but they are mostly indirect. Trout 

compete in a size-based hierarchy for all the resources they consume: food, velocity shelter, and 

hiding places. This hierarchy is simulated by trout executing their habitat and activity selection 

submodel in descending order of length; when each trout selects its activity and cell, it consumes 

resources that are no longer available to the remaining smaller trout.  

There is one form of direct interaction: redd superimposition (Sect. 9.36). When one female trout 

spawns and creates her redd, she can destroy a redd created by a previous spawner. 

6.9 Stochasticity 
Overall, inSTREAM is not a highly stochastic model: few of its submodels depend mainly on 

probability parameters and random numbers to determine the timing or outcome of events. 

However, the model does use stochasticity in several important ways, which can make model 

results relatively stochastic when modeling small reaches and populations.  

The first important use of stochasticity is in the survival submodels (sects. 9.14, 9.31): survival 

of each trout and egg of each kind of mortality is treated as a random Bernoulli trial (which 

randomly produces a value of true or false, given the probability of true) with the probability of 

survival a deterministic function of trout and habitat characteristics. This means that which trout 

die on each time step is partially random. 
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Second, whether or not a female trout spawns on a day when all criteria for spawning are met is a 

random Bernoulli trial. Therefore, the date on which each trout spawns is partially random and 

this date can strongly affect whether and when the spawner’s redd survives to produce new trout. 

Further, this approach prevents spawning if the last date on which spawning is allowed is 

reached before the Bernoulli trial is true, so the number of redds produced is also stochastic. 

Other less-important uses of stochasticity include setting the initial length and location of trout at 

the start of a model run (Sect. 7.3), and tie-breaking in selection algorithms: e.g., in the very 

unlikely event that more than one habitat cell offers the same, best, conditions the trout selects 

one randomly. 

The model parameter random-number-seed (integer) controls the “random number generator”, 

the software platform’s algorithm that produces the pseudorandom numbers used in stochastic 

processes. If this parameter is given a value of zero, then every model run uses a different 

sequence of pseudorandom numbers. If instead random-number-seed is given any non-zero 

value, that value is used as the generator’s “seed”: as long as random-number-seed has the same 

non-zero value, the same sequence of pseudorandom numbers will be used and—if all inputs and 

parameters remain unchanged—the model will produce exactly the same results. Different values 

of random-number-seed produce different pseudorandom number sequences. (The year shuffler 

uses its own random number seed; Sect. 8.2.)  

(NetLogo generates pseudorandom numbers using the “Mersenne Twister” algorithm, a high-

quality random number generator used in many modeling platforms.) 

6.10 Collectives 
InSTREAM does not represent collectives. 

6.11 Observation 
InSTREAM is a complex model that produces many kinds of results, from primary outputs such 

as the number and mean size of trout in several age classes once per year, to numerous 

intermediate outputs such as distributions of age, length, and weight, and the behaviors selected 

by trout (e.g., how many drift feed, search feed, or hide during day, night, and twilight). 

Comprehensive output of all potentially useful results can be too extensive to be useful, while 

too little output (e.g., only the number of fish alive each day) provides too little information to 

understand the model. 

Our solution to the observation concept is to make it easy for users to select the kinds of 

observation they need. This solution is largely a software issue, addressed in Sect. 14, but here 

we summarize the approach: 

By default, graphical displays show fish locations and habitat conditions (e.g., the depth or 

velocity of each cell) each time step. However, updating of graphical output can be turned off to 

reduce execution time. 

File output of population summary statistics is normally produced. The user can choose the 

frequency of this output (e.g., each time step, each simulated day or week) or turn it off. 

Summary population output can include a variable is-census? which has a value of TRUE only if 

the current time step is an annual census date. This variable is useful for identifying output 

comparable to field data collected annually at the same time of year. The census dates are 
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specified by two model parameters: census-days is a list of day-of-the-year values (e.g., "9/30" 

for September 30th) that specify the census dates, and census-years-to-skip specifies the number 

of simulation years that must be completed before is-census? can be TRUE. The value of 

census-years-to-skip is typically set to 2-3 years to avoid effects of initial conditions (Sect. 

26.3). The value of is-census? is TRUE only on time steps that (a) start at a time that is more 

than census-years-to-skip years after the simulation start, (b) have the month and day equal to 

one of the days on the census-days list, and (c) are the first time step of the day. For example, if a 

simulation starts on 10/1/2020, census-days is a list containing "5/1" and "9/30", and census-

years-to-skip is 2, then is-census? will be TRUE on the first time step of 9/30/2023 and the first 

time steps of May 1st and September 30th of subsequent years. 

File output of individual-level events is also normally produced: each time a trout experiences an 

event such as being created, spawning, or dying, it writes a line of output to a file. This file can 

be used to analyze details such as how many fish, of which ages or sizes, die of each kind of 

mortality. 

Optional “debugging” output can be turned on to produce high levels of detail for specific 

submodels. 

The NetLogo software platform of inSTREAM 7 makes it quite easy to further customize 

observation, for example by adding graphs updated during execution or by customizing file 

output. 

7 ODD Element 5: Initialization 
This ODD element describes, in full detail, how inSTREAM 7 is initialized before the start of a 

model run14. Initialization of inSTREAM 7 is complex, so we describe it in separate stages. Sect. 

13 describes the input files used in initialization. 

7.1 Observer initialization 
The observer’s variables (Table 1) are initialized in the following steps. The value of sim-time is 

set to hour 0 of the date specified by the observer parameter start-date15. The values of prev-time 

and step-length are not initialized; on the first time step of the simulation, the time updates action 

sets their value when it advances sim-time. 

The values of light-phase and sunlight-irradiance are not initialized but set by the habitat 

updates action of the first time step. 

7.2 Habitat initialization 
Initializing inSTREAM 7’s reaches and cells depends heavily on preparation of their 

characteristics in other software. Geometry (corner coordinates) is typically created in GIS 

software from field surveys, sometimes with additional information from aerial imagery. Cells 

are read into inSTREAM 7 as GIS polygons, in the cell setup submodel (Sect. 9.1). The static 

cell variables (Table 3) are read into inSTREAM from the GIS file as properties of the 

polygons16. 

 
14 Per NetLogo convention, the overall schedule for initialization is in the procedure setup. 

15 Initialization of time variables is coded in procedure set-up-time. 

16 Creation and initialization of cells is coded in procedure build-cells. 
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The hydraulics submodel (Sect. 9.3) requires two lookup tables for each cell, relating the cell’s 

depth and velocity to reach flow. These tables are typically prepared via parameterization and 

calibration of a two-dimensional hydrodynamic model, although simpler approaches such as the 

quasi-two-dimensional PHABSIM hydraulic models can also be used. GIS analysis can be used 

to re-scale hydraulic model results if the hydraulic model uses a mesh finer than the inSTREAM 

polygons. The hydraulics setup submodel (Sect. 9.2) builds these lookup tables using data read in 

from files17. 

After its lookup tables are read in, the hydraulics submodel is executed to set the initial depths 

and velocities of all cells, for the flow that occurs at the initial value of sim-time. 

The static variables of reaches (Table 2) are read in from the parameter file described in Sect. 11. 

The dynamic variables of reaches are not initialized until the habitat updates action of the first 

time step. 

7.3 Trout initialization 
InSTREAM simulations start with an initial trout population generated, in the trout setup 

submodel (Sect. 9.4), from characteristics provided as input (Table 6)18. This input includes 

multiple records (the rows in Table 6), each specifying the trout species, reach that the trout will 

be created in, age, number of initial trout to create, and minimum, mode, and maximum of the 

initial length distribution. 

Table 6: Example trout population initialization input 

Species Reach Age Number Length min Length mode Length max 

Rainbow Eska 0 300 3 4 5 

Rainbow Eska 1 50 8 10 12 

Rainbow Eska 2 10 15 18 22 

Brown Eska 0 500 3 4 5 

Brown Eska 1 100 10 12 14 

Brown Eska 2 50 18 21 25 

Rainbow Belagua 0 60 3 4 5 

Rainbow Belagua 1 10 8 10 12 

Rainbow Belagua 2 2 15 18 22 

Brown Belagua 0 100 3 4 5 

Brown Belagua 1 20 10 12 14 

Brown Belagua 2 10 18 21 25 

Rainbow Belagua 0 12 3 4 5 

 

 
17 The code that initializes the hydraulic lookup tables is in procedure read-hydraulics. 

18 Creation of the initial trout population is coded in procedure build-initial-populations. Trout state variables 

are initialized in the procedure initialize-trout-with. 
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For each such initialization record, inSTREAM creates the number of trout of the species and 

age specified by the record, and places them in the specified reach. The age can be any integer; it 

is not restricted by the age classes used to summarize output (Sect. 2.2.8). Sex (trout-sex) is 

assigned to each individual randomly, with equal probability of male and female. Each initial 

trout has its length (trout-length) drawn randomly from a triangular distribution with the 

specified minimum, mode, and maximum. Initial trout are assigned a condition (trout-condition) 

of 1.0, meaning that their weight (trout-weight) is set to the healthy weight for the initial length 

(Sect. 9.20). 

Each initial trout’s location trout-cell is set by (a) randomly selecting a location from among all 

those that are within the reach’s wet cells (defined as cells with depth greater than zero after they 

are initialized), and then (b) setting trout-cell to the cell that contains the selected location. In this 

process, “locations” are combinations of integer X and Y coordinates in NetLogo’s built-in grid 

space: all the points where the GIS coordinates divided by (100 × world-resolution) are both 

integers. This process makes the probability of a cell being chosen as the initial location of a fish 

approximately proportional to the cell’s area. 

The dynamic variable trout-activity does not require initialization. The three memory lists of 

trout are initialized by creating the lists and giving each list one member item. The items on 

growth-memory-list and consumption-memory-list are the number 0.0, and the initial item on 

survival-memory-list is the number 1.0. Therefore, on the first time step the habitat and activity 

selection submodel assumes that the trout have, previously on the same day, consumed zero food 

and experienced zero growth (even though those two assumptions conflict because zero 

consumption causes negative growth; Sect. 9.20), and experienced a survival probability of 1.0. 

The variable trout-spawned-this-season? is initialized to FALSE. This value allows initial trout 

to spawn in the first simulated year if simulations start during the spawning season (Sect. 9.27.2). 

The value of trout-superind-rep is initialized to 1: no initial trout are superindividuals. 

7.4 Observer output 
The last initialization event is to execute the action that updates model outputs (the last action on 

the schedule; Sect. 5). This output reflects the state of the model before simulations begin. 

8 ODD Element 6: Input Data 
Time-series input drives many of the dynamic habitat variables: on each time step, the habitat 

update submodel (Sect. 9.8) reads in values of flow, temperature, and turbidity for each reach. 

The flow value then drives the hydraulics submodel’s update of cell depths and velocities (Sect. 

9.3).  

8.1 Flow, temperature, and turbidity input 
The input for flow, temperature, and turbidity of each reach are read from an input file that 

includes, in each row, a date and time and corresponding values of flow, temperature, and 

turbidity (Sect. 13.5)19. The interval between input values is not restricted: it can be (for 

example) one day, one hour, one week, or variable (to capture short-term flow events). 

(However, see Sect. 14.1.7 concerning how the inSTREAM software checks for missing input 

 
19 Reading of new time series variable values is coded in procedure update-habitat. 
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values.) The input value used for each time step is obtained by finding the input record with date-

time value closest to the date and time of the middle of the time step. Because of this method for 

assigning time series input to each time step, input in the form of daily mean values should be 

entered in the time series input file with a time of 12:00 (as in Figure 3) so all of a day’s time 

steps use the same mean value.  

The middle of a night time step is always be exactly midnight (Sect. 9.6). When daily input has a 

time of 12:00, inSTREAM uses the input for the day starting (not ending) at midnight. In other 

words, when daily input with a time of 12:00 is used, night time steps are assigned the flow, 

temperature, and turbidity of the calendar day on which the time step ends (e.g., the time step 

extending from 19:30 on May 10 to 4:30 on May 11 uses input for 12:00 of May 11). 

Even though inSTREAM 7 does not require time series input at any specific or consistent 

interval, its software enforces two restrictions. First, the input file must include values from 

times within 4.0 days of (a) midnight at the start of the first simulated day (parameter start-date) 

and (b) 23:00 of the last simulated day (end-date). Second, the software checks for missing dates 

in the input file (which are an extremely common mistake), using methods described at Sect. 

14.1.7. 

 

 

Figure 3: Example time series input, viewed in a spreadsheet. (Sect. 13.5 describes the file 

format.) 

 

Turbidity data are often lacking for inSTREAM study sites, and for previous versions it was 

common to simply input values of zero turbidity for clear streams. However, the cell light 

submodel of inSTREAM 7 (Sect. 9.10) calculates light attenuation with depth as a function of 

turbidity and assumes no attenuation when turbidity is zero. To avoid unrealistic irradiance 

values, avoid use of zero values for turbidity; a good alternative in the absence of data is to 

assume a proportional relation between flow and turbidity (turbidity = Z × flow, where Z is a 

constant). 
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8.2 The year shuffler 
InSTREAM 7, like previous versions, includes a “year shuffler” tool that optionally randomizes 

the sequence of input years20. The year shuffler provides one way to replicate simulations. The 

standard replication method, using different sequences of pseudorandom numbers (Sect. 6.9), 

illustrates the variability in the model’s output that results from its stochastic processes. 

Replication via the year shuffler instead illustrates the variability due to year-to-year variation in 

hydrologic and weather conditions.  

The input years to be shuffled are not calendar years but instead “water years”: years that start on 

a date when stream flows are typically at their lowest and steadiest. In the United States, the 

convention used by the US Geological Survey starts water years on 1 October. However, the year 

shuffler lets users define the water year’s start date. Also by convention, water years are 

numbered by the calendar year in which they end: if the water year starts on 1 October, then any 

date between 1 October 2007 and 30 September 2008 belongs to water year 2008. 

The year shuffler uses three model parameters. The first, shuffle-years?, is a true-false variable 

that turns the shuffler on or off. If shuffle-years? is set to false, then the model uses the time 

series input exactly as provided in the input file. The parameter shuffle-day is the day of the year 

(input as a character string in M/d format, e.g., "10/1") on which new water years start.  

The third shuffler parameter is its random number seed, shuffle-rand-seed, an integer. If the 

value of shuffle-rand-seed is zero the year shuffler uses the model’s main random number 

generator (Sect. 6.9). Therefore, input will be shuffled in a different sequence every model run if 

the model parameter random-number-seed is set to zero. However, if shuffle-rand-seed is zero 

and random-number-seed has a non-zero value, the sequence of shuffled years may or may not 

be unchanged among model runs: if any change in parameter values or inputs (e.g., the number 

of initial fish) causes the random number generator to be used a different number of times before 

the years are shuffled, then the year sequence will be different. Therefore, if shuffle-rand-seed 

has a non-zero value the year shuffler uses its own random number generator that uses shuffle-

rand-seed as its seed. Whenever shuffle-rand-seed has a non-zero value, the year shuffler will 

produce exactly the same sequence of shuffled water years in the input data, and changing the 

value of shuffle-rand-seed changes that shuffled sequence. 

When the year shuffler is turned on, it re-writes the time series input for each reach using the 

following steps. 

A list of calendar years in the simulation is created. This “year list” contains the calendar year 

(e.g., 2007) for each year from the simulation’s start to end (from start-date to end-date). For 

example, a model run starting 9/15/2015 and ending 11/30/2020 would produce a list containing 

2015, 2016, 2017, 2018, 2019, 2020. (The year shuffler obviously cannot be used for model runs 

that start and end in the same calendar year.) 

A “shuffled year list” is created by copying the year list and randomly shuffling it. 

The time series input is re-written. For each row, a year-shuffled time value is created by copying 

the real time and replacing its year with a shuffled one. If the day of the year is before shuffle-

day, then the shuffled year is the corresponding year in the shuffled year list: if the year of the 

 
20 The year shuffler is programmed entirely within the procedure set-up-time. When the year shuffler is turned 

on, it writes an output file containing the shuffled input and the time from which shuffled values were taken. 
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input’s date is (e.g.) the third year on the year list, then the shuffled year is the third year on the 

shuffled year list. If instead the date is on or after shuffle-day, the shuffled year is the next year 

in the shuffled year list (e.g., if the true year is third on the year list, the shuffled year is the 

fourth item on the shuffled year list). Then the flow, temperature, and turbidity values for the 

input time are replaced by those corresponding to the year-shuffled time value. This algorithm 

causes the input to be taken from a random new year each time shuffle-day is reached. 

The year shuffler must cope with leap years: replacing the input for 2004 with input from 2007 

must deal with the fact that 2004 includes a 29 February and 2007 does not. When the year 

shuffler copies input from a non-leap year into a leap year, the values for 29 February are those 

of 28 February in the non-leap year. When input from a leap year are copied into a non-leap year, 

the 29 February values are ignored. 

9 ODD Element 7: Submodels 
Element 7 of ODD provides complete detail for the submodels identified in the “overview” 

elements. The submodels are presented in approximately the order in which they are executed 

during (a) initialization and (b) each time step, with related submodels grouped together. 

9.1 Cell setup 
The cell setup submodel creates the cells of each reach and sets their state variables, as part of 

initialization (Sect. 7.2)21. Cells are input as polygons. The centroid location of each cell is 

calculated from the polygon vertex (corner) coordinates, and the cell’s location set to its centroid 

location. The static cell variables (cell-area, cell-num-hiding-places, cell-escape-dist, cell-frac-

vel-shelter, cell-frac-spawn) are also read from an input file. Then the hydraulics setup submodel 

(Sect. 9.2) is executed. Dynamic cell state variables are initialized during the habitat updates 

action of the first time step. 

(All these cell characteristics are read from an ESRI shapefile, as explained in Sect. 13.2. The 

software performs many additional steps during cell setup, such as drawing the polygons on the 

display, identifying each cell’s adjacent cells, and creating data structures that increase execution 

speed.) 

9.2 Hydraulics setup 
This submodel reads in the lookup tables used by the hydraulics submodel (Sect. 9.3) to calculate 

cell depths and velocities from flow22. These tables are input in the form of two files, one each 

for depth and velocity. A separate pair of files is input for each habitat reach. Each file includes 

(a) a list of flows at which depth/velocity was calculated, and (b) a table with the depth/velocity 

of each cell at each of the flows (Figure 4). These input files must be prepared in hydraulic 

modeling software, independently of inSTREAM.  

 The hydraulics setup submodel creates separate depth and velocity lookup tables for each cell. 

To create the depth lookup tables, it first reads in the list of flows at which depth is provided, and 

then the list of corresponding depths for each cell. The depth lookup table for each cell is created 

from this input: the table is created with a “point” (pair of flow and corresponding depth values) 

for each flow and cell depth in the input file. Each cell’s depth table is then modified to remove 

 
21 Cell setup code is in the procedure build-cells. 

22 Hydraulics setup is coded in procedure read-hydraulics. 
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flows at which depth is zero, but to include either (a) the flow above which the cell has positive 

depth, which is also the value of the cell variable cell-flow-at-wetting; or (b) the depth when flow 

is zero, for cells that are always wet even when there is no flow (e.g., in pools). These steps are 

used: 

• If the first flow in the input file is 0.0, then none of the following steps are used. The 

following steps determine how depth is calculated at flows between zero and the lowest 

in the input.  

• If depth is positive at the lowest flow in the lookup table input, and depth decreases 

between the first and second flow with non-zero depth (unusual but possible) or is equal 

at those two flows, then depth at zero flow is assumed equal to depth at the first input 

flow. A point is added to the lookup table with flow = 0.0 and depth equal to the first 

input depth; cell-flow-at-wetting is set to 0.0.  

• Otherwise, the flow at which depth reaches zero (Q0-E) is extrapolated backwards, 

linearly, from the two lowest flows that have non-zero depths.  

o If Q0-E is less than the highest flow in the input having depth of zero, then the 

lookup table is not modified and cell-flow-at-wetting is set to the highest input 

flow with depth of zero. (This case is not possible if depth is positive at the first 

input flow.) 

o Otherwise, if depth is positive at the first input flow and Q0-E is negative, then the 

depth at zero flow is calculated as the Y-intercept of a line through the two lowest 

points in the lookup table; cell-flow-at-wetting is set to 0.0. 

o Otherwise (Q0-E is positive and higher than any other input flows), the first point 

in the lookup table is set to flow = Q0-E and depth = 0.0; cell-flow-at-wetting is set 

to Q0-E. 

o Any points with flow less than cell-flow-at-wetting are removed from the table. 

If a cell’s depth lookup input includes only one positive depth, at its highest flow, then cell-flow-

at-wetting is set to the second-highest flow in the input. 

This process is repeated for the velocity input, with one difference: the first point in each velocity 

lookup table always has flow = cell-flow-at-wetting and velocity = 0.0 (cells with positive depth 

at zero flow have velocity approaching zero as flow approaches zero). 
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Figure 4: Example extract from a hydraulic input file, viewed in a spreadsheet. The row 

highlighted in blue provides the flows at which depths were calculated by an external hydraulic 

model, and the first column (green cells) indicate which cell the depth values are for. For 

example, cell 46 has a depth of 0.33 cm when the flow is 26.9 m3/s. 

9.3 Hydraulics 
The hydraulics submodel is applied to each cell each time flow changes, to update cell-depth and 

cell-velocity.23 It uses the lookup tables created by the hydraulics setup submodel (Sect. 9.2). 

Here, “flow” refers to the flow for which depth and velocity are calculated, and “depth” and 

“velocity” refer to cell-depth and cell-velocity. 

This submodel uses linear interpolation; when we say that (e.g.) the velocity for flow Q is 

interpolated from two flows in the lookup table, we mean that the model first fits a line to two 

points. The first point has X = the first flow (which is less than Q) and Y = the velocity in the 

table for that flow, and the second point has X = the second flow (which is greater than Q) and Y 

= the velocity for the second flow. Then the velocity for Q is calculated as the Y value on this 

line corresponding to X = Q. 

The submodel uses these steps: 

 When flow is above cell-flow-at-wetting (the lowest lookup table flow, above which depth is 

positive) and below the highest flow in the table, depth and velocity are interpolated from the 

lookup table points just below and above the flow. 

If instead flow is equal to or below cell-flow-at-wetting, depth and velocity are set to zero.  

If the flow is higher than the highest flow in the lookup tables then both depth and velocity are 

extrapolated linearly upward from their values at the two highest flows in the table. (The 

extrapolation method is identical to interpolation except that the flow is higher than, not between, 

the two lookup table points.) This extrapolation for higher flows does not allow cells dry at the 

 
23 The hydraulics submodel is coded in the procedure update-hydraulics-for. 
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highest flow in the lookup table to become wet at even higher flows. It is possible for this 

extrapolation to produce negative depths or velocities, when a cell has a lower depth or velocity 

at the highest flow in the table than at the second-highest flow. In this surprisingly common case, 

negative depths are set to zero but negative velocities raise an error; the problem must be solved 

by revising the lookup table. 

To prevent these interpolation methods from having strong and unrealistic effects, it is very 

important for the depth and velocity lookup tables to include many flows spanning the range to 

be simulated in inSTREAM. Doing so often requires extrapolating a hydraulic model’s 

calibration beyond its recommended range, but extrapolation in the hydraulic model is preferable 

to extrapolation in inSTREAM. 

9.4 Trout setup 
This submodel creates the initial trout population at the beginning of a model run24; Sect. 7.3 

describes it fully. (The method for drawing a random length from a triangular distribution was 

taken from: en.wikipedia.org/wiki/Triangular_distribution#Generating _Triangular-

distributed_random_variates, accessed 27 November 2015.) 

9.5 Day length 
This submodel calculates the length (d) of daytime day-length and of twilight (the two times per 

day when the sun is between the horizon and 6° below the horizon; twilight-length). These values 

are functions of the date and site latitude.25 

InSTREAM uses the day length method of Glarner (2011), in particular Glarner’s equations 7, 8, 

14, and 15 for day length and equations 23 and 27 for day length including the two twilight 

periods. The observer variable day-length is set to day length without twilight, and twilight-

length (the length of one twilight) is set to one half of the difference between day length with 

twilight and day-length. The twilight angle (model parameter twilight-angle) has a standard 

value of 6°, in keeping with a standard definition of twilight called “civil twilight.” 

The inSTREAM implementation assumes that the winter solstice is always on December 21, so 

the day used in Glarner’s equations (day of the solar year, starting on the winter solstice) is 

calculated as the Julian date plus 10 d. Because inSTREAM assumes there is always a morning 

and evening twilight period, it cannot be used at polar latitudes (> ~66°) where the entire day can 

be either daytime or night. The model software raises an error condition if day-length is 

calculated to be ≤0.0 or ≥1.0 or if twilight-length is ≤0.0.  

Figure 5 illustrates the behavior of this submodel, including that the length of dawn and dusk 

phases varies somewhat with latitude but little (compared to variation in day and night phases) 

with date. 

 

 
24 Trout initialization is coded in the procedure build-initial-populations, which uses the procedure 

initialize-trout-with to actually initialize each new fish. 

25 The day length calculations are coded in the procedure update-day-length.  
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Figure 5: Duration (h) of day, night, and twilight (both dawn and dusk) phases over a year, for 

(top) latitude = 30°, and (bottom) 50º. Twilight phase length uses the right Y axis. 

 

9.6 Step timing 
The step timing submodel calculates the start and end times of a day’s time steps26. It executes at 

the start of the first time step of each calendar day (whenever the previous time step ended on a 

different date than it started). Time step lengths are determined by sunlight: new time steps start 

at the beginning of the dawn, day, dusk, and night phases. (InSTREAM 7 could be modified to 

use additional variables, such as flow or temperature, also trigger new time steps.) 

The following steps are used. 

The day length submodel (Sect. 9.5) is used to update the value of day-length and twilight-length 

for the new date.  

The end of the current time step (a night phase) is the start of the dawn phase, assumed to be 

when the sun is 6° below the horizon. The time (d) between midnight and the start of dawn is 

calculated as [(1.0 – day-length) / 2] – twilight-length. 

 
26 This submodel is programmed in the procedure update-time-and-habitat. 
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The end of the following dawn phase (and start of day) is assumed to be when the sun is 6° 

above the horizon, which is the time of sunrise plus twilight-length. The time between midnight 

and the start of day is calculated as the start of dawn plus (2 × twilight-length). 

The end of the day phase (start of dusk) is assumed to be when the sun falls to 6° above the 

horizon, the time of which is equal to the start of dawn plus day-length. 

The end of the dusk phase (start of night) is when the sun falls to 6° below the horizon, 

calculated as the time at which dawn ends plus day-length. 

After these calculations, a series of checks are made to ensure that each light phase has a non-

zero duration. At high latitudes (~62-66°N), the day length and step timing methods do not work 

on dates near the solstices; for example, the duration of night plus dawn plus dusk can exceed 1.0 

days. The following checks allow inSTREAM to be used at these high latitudes, though they 

produce somewhat artificial phase lengths (and therefore light intensities; Sect. 9.9) near the 

solstices. The checks ensure that each of the four daily light phases is at least 0.002 d (3 minutes) 

long, every day: If dawn starts less than 0.001 d after midnight, its start (and the end of the 

previous night) is changed to 0.001 d after midnight. If dawn ends later than 0.001 d before 

noon, its end (and the start of day) is changed to 0.001 d before noon. If dusk starts earlier than 

0.001 d after noon, its start (and the end of day) is set to 0.001 d after noon. If dusk ends later 

than 0.001 d before midnight, its end (and the start of night) is set to 0.001 d before midnight. 

9.7 Simulation time 
This submodel updates the model’s time variables, and includes the “stopping rule” that ends a 

simulation27. It uses the results of the time stepping submodel. The value of sim-time is advanced 

to the end of the next phase (if light-phase was night, sim-time is set to the time at which dawn 

ends; if light-phase was dawn, sim-time is set to the time at which day ends; etc.) and the value 

of prev-time is set to the previous value of sim-time. The value of light-phase is advanced to the 

next phase (from night to dawn, dawn to day, etc.). The value of step-length is set to the 

difference between sim-time and prev-time. 

The stopping rule checks to see whether the new value of sim-time is after the 23rd hour of the 

date specified by model parameter end-date28. If so, the model stops immediately. Therefore, 

simulations include phases through dusk of end-date. 

9.8 Habitat update 
The habitat update submodel updates the reach and cell habitat variables each time step29, mainly 

by calling other submodels. It executes these steps: 

Time series inputs are updated as described in Sect. 8. 

The hydraulics submodel (Sect. 9.3) is called to update cell depths and velocities. 

The surface light submodel (Sect. 9.9) calculates the surface irradiance for the time step. 

The cell light submodel (Sect. 9.10) updates the irradiance in each cell. 

 
27 The simulation time submodel is also coded in the procedure update-time-and-habitat. 

28 The stopping rule is programmed in the go procedure. 

29 The habitat update submodel is programmed in the procedure update-habitat. 
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The availability of cell resources such as food and cover are updated by the cell resource 

depletion submodel (Sect. 9.11). 

9.9 Surface light 
The surface light submodel calculates the mean sunlight irradiance (observe variable sunlight-

irradiance, abbreviated here as SI) for each time step30. In general, inSTREAM 7 users need not 

be overly concerned about precise simulation of light because its effects on trout feeding (Sect. 

9.22) and survival (sects. 9.18, 9.19) are not highly sensitive to small variation in irradiance. 

The submodel is designed to be general and applicable for time steps of any length and starting 

and ending at any time of day. It includes two components: a function that calculates mean 

irradiance between two times of day (while the sun is continuously above the horizon); and a set 

of equations that calculate time-weighted average irradiance for a time step, depending on how 

much of the time step occurs during night vs. day. The mean irradiance function is referred to 

hear as LIB(time-A, time-B) where time-A and time-B are the start and end times of the period for 

which light is calculated. 

Unlike the step timing submodel (Sect. 9.6), this surface light submodel does not consider 

twilight explicitly but instead treats sunrise and sunset as the start and end of daytime. This 

difference is because the available irradiance models address direct radiation, which is zero 

during twilight. The methods we use to approximate light during dawn and dusk are explained 

below. In this submodel description only, we ignore twilight and delineate “day” and 

“night” by sunset and sunrise. 

In this submodel description, observer date and time variables such as step-length and day-length 

refer to the time step and date for which irradiance is being calculated. The submodel also uses 

sunrise-time and sunset-time, the date and time of the current day’s sunrise and sunset. Sunrise-

time is set to noon minus one half of day-length, and sunset-time is set to sunrise-time plus day-

length. When the sunrise and sunset times and day length of the following day are required, they 

are approximated as the same as for the current day. 

This submodel assumes that irradiance at night is constant at the value of the observer parameter 

light-at-night, which can be adjusted to reflect typical nighttime light levels of a study site and 

their effect on fish feeding (Sect. 9.22). Our default value is 0.9 W/m2. 

9.9.1 Function for mean irradiance over a period of daylight 

This function LIB(time-A, time-B) assumes that the time period between time-A and time-B is of 

continuous daylight on the same day. The function is modified from equation 1.10.4 of Duffie 

and Beckman (2013). Mean solar irradiance above the water surface (LIB, W/m2) between two 

times (t1 and t2) is approximated as: 

𝐿𝐼𝐵 = 𝐶
12𝐺𝑆𝐶

𝜋(𝑡2−𝑡1)
(1 + 0.033𝑐𝑜𝑠 (

360𝑛

365
)) (𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝛿(𝑠𝑖𝑛𝜔2 − 𝑠𝑖𝑛𝜔1) +

𝜋(𝜔2−𝜔1)

180
(𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝛿)). 

 

 
30 Surface light updates are coded in procedure update-light. Calculation of mean irradiance between two times 

during the day is coded in light-intensity-between. 
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This equation approximates mean irradiance (W/m2) on an unshaded horizontal surface that is 

not under water, between times t1 and t2 (corresponding to time-A and time-B). The variable C is 

an observer parameter (light-correction) with a value between zero and one, reflecting the extent 

to which extra-terrestrial radiation is reduced by the atmosphere, clouds and humidity, and 

pollution. Duffie and Beckman (2013) provide methods and data (e.g., their Table 2.7.2) for 

estimating C. For relatively cloud-free areas, values in the range of 0.6 to 0.8 appear reasonable 

for C. The variable GSC is the solar constant, assumed to be 1367 W/m2 (Sect. 1.2 of Duffie and 

Beckman 2013). The variable n is the Julian date (day of the year, starting with 1 on January 1). 

The variables ω1 and ω2 are the “hour angles” (degrees) for times t1 and t2, equal to -180 + 

(15°×t) where the time t is in hours.  

The variable φ is the latitude (° north), the observer parameter latitude. The variable δ is the solar 

declination (angle of the sun above the equator at noon), updated in the day length submodel as: 

𝛿 = 23.45 × 𝑠𝑖𝑛 (360
284 + 𝑛

365
). 

9.9.2 Equations for time step mean irradiance 

The following algorithms are used to calculate SI depending on when the time step begins and 

ends.  

If the entire time step is at night then SI = light-at-night. 

If the time step spans from night to day (which includes dawn phases), irradiance is 

approximated as the time-weighted average of night and day values: 

𝑆𝐼

=
𝑙𝑖𝑔ℎ𝑡𝐴𝑡𝑁𝑖𝑔ℎ𝑡 × (𝑠𝑢𝑛𝑟𝑖𝑠𝑒𝑇𝑖𝑚𝑒 − 𝑝𝑟𝑒𝑣𝑇𝑖𝑚𝑒) + 𝐿𝐼𝐵(𝑠𝑢𝑛𝑟𝑖𝑠𝑒𝑇𝑖𝑚𝑒, 𝑠𝑖𝑚𝑇𝑖𝑚𝑒) × (𝑠𝑖𝑚𝑇𝑖𝑚𝑒 − 𝑠𝑢𝑛𝑟𝑖𝑠𝑒𝑇𝑖𝑚𝑒)

𝑠𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ
. 

For a dawn phase time step, which has equal amounts of time before and after sunrise, this 

equation reduces to: 

𝑆𝐼 =
𝑙𝑖𝑔ℎ𝑡𝐴𝑡𝑁𝑖𝑔ℎ𝑡+𝐿𝐼𝐵(𝑠𝑢𝑛𝑟𝑖𝑠𝑒𝑇𝑖𝑚𝑒,𝑠𝑖𝑚𝑇𝑖𝑚𝑒)

2
. 

If the time step is entirely within daytime (as in a daytime phase), then: 

𝑆𝐼 = 𝐿𝐼𝐵(𝑝𝑟𝑒𝑣𝑇𝑖𝑚𝑒, 𝑠𝑖𝑚𝑇𝑖𝑚𝑒). 

If the time step goes from daytime to night (as in a dusk phase): 

𝑆𝐼 =
𝐿𝐼𝐵(𝑝𝑟𝑒𝑣𝑇𝑖𝑚𝑒,𝑠𝑢𝑛𝑠𝑒𝑡𝑇𝑖𝑚𝑒)×(𝑠𝑢𝑛𝑠𝑒𝑡𝑇𝑖𝑚𝑒−𝑝𝑟𝑒𝑣𝑇𝑖𝑚𝑒)+𝑙𝑖𝑔ℎ𝑡𝐴𝑡𝑁𝑖𝑔ℎ𝑡×(𝑠𝑖𝑚𝑇𝑖𝑚𝑒−𝑠𝑢𝑛𝑠𝑒𝑡𝑇𝑖𝑚𝑒)

𝑠𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ
. 

The results of this submodel are illustrated by Figure 6, which shows mean surface irradiance 

over the year for two latitudes, during daytime and twilight phases. Note that during dawn and 

dusk phases irradiance is always within a narrow range of ~21-26 W/m2, while daytime light 

varies within a year by ~200-300 W/m2. 
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Figure 6: Mean surface irradiance as a function of date, during daytime (left Y axis) and twilight 

(dawn and dusk, which have equal irradiance; right Y axis), for latitudes of 30° and 50°. The 

oscillations in twilight values are due to surface irradiance being a complex function of phase 

length and sun angles through the day; these oscillations are negligible (<2 W/m2; right Y axis). 

9.10 Cell light 
This submodel calculates, for each cell, a light irradiance value that represents what fish 

occupying the cell experience. Considering that fish are not always on the cell bottom, and that 

they are affected more by light conditions above than below them (for seeing food, or being seen 

by predators), we define the characteristic irradiance as that occurring at half the cell’s depth31.  

The submodel assumes that cell irradiance varies with the surface irradiance (Sect. 9.9), cell 

depth, turbidity, and local shading (Julian et al. 2008). (Julian et al. 2008 also include a 

coefficient reducing irradiance by the reflection at water surface; we neglect that term as minor 

and indistinguishable from shading.) We use the standard Beer’s Law approach, which models 

irradiance as a negative exponential function of depth, with the rate of light attenuation with 

depth depending on the optical qualities of the water: 

𝑐𝑒𝑙𝑙𝐿𝑖𝑔ℎ𝑡 = 𝑠𝑢𝑛𝑙𝑖𝑔ℎ𝑡𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 × 𝑟𝑒𝑎𝑐ℎ𝑆ℎ𝑎𝑑𝑖𝑛𝑔 × 𝑒𝑥𝑝(−𝑘 × 𝑐𝑒𝑙𝑙𝐷𝑒𝑝𝑡ℎ 2⁄ ). 

In this equation, reach-shading is a reach parameter that represents the fraction of solar 

irradiance that is not blocked by (e.g.) vegetation and topography. Julian et al. (2008) discuss 

methods for estimating reach-shading; shading has been modeled as a function of local horizon 

angles and date, e.g., in the water temperature models of Theurer et al. (1984). This parameter is 

only a coarse overall adjustment factor, because inSTREAM represents shading at the reach 

scale and ignores variation over time (both within-days and across seasons).  

The light extinction coefficient k increases with turbidity. A number of empirical models relating 

k to turbidity have been published; variation among them is likely due to variation in the cause of 

turbidity (algae vs. mineral; type of mineral) and how it refracts and absorbs light. We use this 

simple equation for k: 

𝑘 = (𝑙𝑖𝑔ℎ𝑡𝑇𝑢𝑟𝑏𝑖𝑑𝐶𝑜𝑒𝑓 × 𝑡𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦) + 𝑙𝑖𝑔ℎ𝑡𝑇𝑢𝑟𝑏𝑖𝑑𝐶𝑜𝑛𝑠𝑡 

 
31 The cell light submodel is programmed in the procedure update-habitat. The assumption that the 

characteristic light level is that at half the cell’s depth is programmed there but easily changed. 
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where turbidity is a reach state variable (Sect. 4.1.2) and reach-light-turbid-coef (cm-1/NTU) and 

reach-light-turbid-const (cm-1) are reach parameters. We use the values of Julian et al. (2008) as 

standard values; these values and alternatives are in Table 7. (Note that the literature usually 

reports k in units of m-1 but we convert the models to units of cm-1.) 

Table 7: Alternative parameter values for light extinction 

Source Basis reach-light-

turbidity-coef 

reach-light-

turbid-const 

Figure 5 of: Julian et al. (2008) Data from a small spring-fed 

creek and a large warmwater 

river 

0.0017 0.0 

Equations 3 and 4 of: Hansen and 

Beauchamp (2015), fit to a linear 

model 

Data of Lloyd et al. (1987) 

from 14 cold Alaskan lakes 

0.0045 0.039 

Equation 2 of: Lloyd et al. (1987) Data from Eklutna Lake, 

Alaska 

0.00064 -0.00093 

Equation 4 of: Lloyd et al. (1987) Data from Alaskan streams 

with turbidity from placer 

mining 

0.00024 0.01 

 

This submodel causes irradiance to decrease substantially with cell depth, even at relatively low 

turbidity values (Figure 7). However, a turbidity of zero produces no light attenuation with depth. 

Users can prevent an unrealistic lack of light attenuation by avoiding zero values for turbidity.  
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Figure 7: The cell light submodel’s light attenuation as a function of depth and turbidity. The Y 

axis is the degree to which surface light is attenuated at half the cell’s depth, or cell-light / 

sunlight-irradiance. The shading parameter is equal to 0.8 (light is reduced 20% by shading). 

 

9.11 Cell resource depletion 
This submodel does “bookkeeping” to model the availability of cell resources depleted by fish 

within each time step. As the habitat and activity selection action (Sect. 9.13) is executed, each 

trout considers how much of each such resources is available in each cell when deciding which 

cell to occupy, and then depletes some of the resources of the cell it occupies. Subsequent fish 

cannot use the depleted resources. The submodel has two separate functions: resetting resources 

to undepleted levels as part of the habitat update action at the start of each time step, and tracking 

resource depletion by trout during the habitat and activity selection action32. 

9.11.1 Resetting resources at the start of a time step 

At the start of each time step, the submodel resets depletable cell resource variables to 

undepleted levels. The two food resource variables cell-available-drift and cell-available-search 

represent rates at which food becomes available to the trout (g/d).  

The rate at which drift food is available is modeled as the volume of water flowing into the cell 

(cm3/d) times a concentration of drift food (g/cm3), plus a term representing regeneration of food 

consumed by trout within the cell. The undepleted value is modeled as: 

𝑐𝑒𝑙𝑙𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐷𝑟𝑖𝑓𝑡 =
86400 × 𝑐𝑒𝑙𝑙𝐴𝑟𝑒𝑎 × 𝑐𝑒𝑙𝑙𝐷𝑒𝑝𝑡ℎ × 𝑐𝑒𝑙𝑙𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 × 𝑟𝑒𝑎𝑐ℎ𝐷𝑟𝑖𝑓𝑡𝐶𝑜𝑛𝑐

𝑟𝑒𝑎𝑐ℎ𝐷𝑟𝑖𝑓𝑡𝑅𝑒𝑔𝑒𝑛𝐷𝑖𝑠𝑡
 

where 86400 s/d converts the rate from per second to per day, and cell-area (cm2), cell-depth 

(cm), and cell-velocity (cm/s) are cell state variables. Reach-drift-conc (g/cm3) and reach-drift-

regen-distance (cm) are reach parameters. These two parameters strongly affect availability of 

the most important trout food resource and, therefore, trout growth, size, and abundance. The 

value of reach-drift-conc is typically estimated via calibration (Sect. 24.3), which commonly 

produces values in the range of 1-10×10-10. Reach-drift-regen-distance can be thought of as the 

distance over which drift consumed by fish is replenished from the benthos; lower values 

represent more drift-productive conditions. This parameter can also be estimated via calibration 

because lower values allow more simulated trout to occupy the same cell without changing the 

food intake rate obtained by each trout. Values for reach-drift-regen-distance commonly range 

500-2000 cm. 

The rate at which search food becomes available is modeled very simply, given the potential 

complexity of search feeding and lack of literature on it. The undepleted value is reset to: 

𝑐𝑒𝑙𝑙𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑆𝑒𝑎𝑟𝑐ℎ = 𝑐𝑒𝑙𝑙𝐴𝑟𝑒𝑎 × 𝑟𝑒𝑎𝑐ℎ𝑆𝑒𝑎𝑟𝑐ℎ𝑃𝑟𝑜𝑑 

where reach-search-prod (g/cm2/d) is a reach parameter representing the rate at which search 

food becomes available. This parameter can also be estimated via calibration; it generally affects 

growth of only small trout (Sect. 24.3). Values in the range of 1-4×10-5 are typical. (Previous 

 
32 The resource resetting function is programmed in the procedure update-habitat. Depletion of resources is 

programmed in deplete-drift-by, deplete-search-by, deplete-vel-shelter-by, and deplete-hiding-

places-by. 
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versions of inSTREAM treated this parameter as an hourly rate, so values from previous versions 

must be multiplied by 24 before use in inSTREAM 7.) This parameter cannot be directly 

estimated from measurements of benthic biomass because (a) there is no clear relation between 

biomass density and the rate at which it becomes available as food and (b) it also represents other 

food sources with availability independent of flow, such as terrestrial invertebrate drop into 

pools. 

Two other depleted cell resources represent the cell area providing two kinds of “cover”. The 

variable cell-available-vel-shelter represents the available area that provides velocity shelter for 

drift-feeding fish. (Sect. 22.2 provides guidance on estimating cell- available-vel-shelter.) It has 

an undepleted value of: 

𝑐𝑒𝑙𝑙𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑉𝑒𝑙𝑆ℎ𝑒𝑙𝑡𝑒𝑟 = 𝑐𝑒𝑙𝑙𝐴𝑟𝑒𝑎 × 𝑐𝑒𝑙𝑙𝐹𝑟𝑎𝑐𝑉𝑒𝑙𝑆ℎ𝑒𝑙𝑡𝑒𝑟. 

The variable cell-available-hiding-places represents the number of hiding places remaining that 

adult trout can occupy while using the hiding activity instead of feeding (Sect. 9.13). It is reset to 

an undepleted value of the cell variable cell-num-hiding-places. 

9.11.2 Depletion of resources during habitat and activity selection 

After each model trout selects the habitat cell and activity it uses on the current time step, the 

resources it uses are subtracted from those remaining for other fish that consider using the 

selected cell, using the following steps. The variables discussed here are for the trout that 

selected its habitat and activity and for the cell that trout chose to occupy. 

If the selected activity is “hide” then no food resources are depleted; cell-available-drift and 

cell-available-search remain unchanged. Likewise, cell-available-vel-shelter is unchanged. If the 

number of unoccupied hiding places cell-available-hiding-places is greater than zero, it is 

decreased by one and the individual is assumed to use a hiding place. (For superindividuals—

trout with value of trout-superind-rep > 1—the number of hiding places is decreased by the 

trout’s value of trout-superind-rep.) If cell-available-hiding-places is zero (or less than a 

superindividual’s value of trout-superind-rep) then the individual is assumed unable to use a 

hiding place (Sect. 9.18.6) and cell-available-hiding-places is unchanged. 

If the selected activity is “drift” then cell-available-hiding-places and cell-available-search are 

unchanged, but the availability of drift food and velocity shelter are decreased. The value of cell-

available-drift is updated by subtracting the drift food intake of the trout, which is calculated in 

the habitat and activity selection submodel. (That submodel limits drift food intake so it cannot 

exceed cell-available-drift, so the value of cell-available-drift cannot become negative.) The 

habitat and activity selection submodel assumes that trout selecting the “drift” activity occupy 

velocity shelter if enough is available in the cell; “enough available” is defined as cell-available-

vel-shelter ≥ trout-length2. Therefore, the value of cell-available-vel-shelter is decreased by the 

square of the trout’s length; if the result would be negative then the trout does not use velocity 

shelter and cell-available-vel-shelter is unchanged (so velocity shelter remains potentially 

available for smaller trout). (The amount of drift food and velocity shelter depleted by a 

superindividual trout is multiplied by its value of trout-superind-rep.) 

If the selected activity is “search” then cell-available-hiding-places, cell-available-drift, and 

cell-available-vel-shelter are unchanged and the availability of search food is decreased. The 

value of cell-available-search is updated by subtracting the search food intake of the trout as 

calculated in the habitat and activity selection submodel. Search food intake is limited so it 
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cannot exceed cell-available-search and the value of cell-available-search cannot become 

negative. (The amount of search food depleted by a superindividual trout is multiplied by its 

value of trout-superind-rep.) 

9.12 Trout memory 
This submodel updates the three trout memory variables, consumption-memory-list, growth-

memory-list, and survival-memory-list, which are lists containing the food consumption, growth 

rates, and survival probabilities experienced by the trout during previous time steps of the 1.0 d 

period that ends at sim-time (the end of the current time step). In doing so, it also updates the 

observer variable daily-step-length-list. The submodel is executed before habitat and activity 

selection each time step. The submodel is designed to work with fewer or more than the standard 

four time steps per day. (The habitat and activity selection submodel also affects these lists: after 

each trout has identified the cell and activity it will use, it records the food consumption, growth, 

and survival it experiences there by adding those values to the beginning of the lists; Sect. 

9.13.3) 

The first step in the submodel is updating daily-step-length-list and evaluating a variable last-

step-adjuster; this step is done by the observer33. Daily-step-length-list contains the values of 

step-length for the preceding time steps of the 1.0 d period that ends at sim-time. This list is 

maintained by adding the value of step-length for the previous time step to the beginning of the 

list, and then removing values from the end of the list to make the sum of its values plus step-

length as close as possible to 1.0 d. Values are removed from the end of the list one at a time until 

removing the next value would make the absolute value of the sum of list values plus step-length 

minus 1.0 increase instead of decrease (the total time represented by the list plus the current time 

step becomes further instead of closer to 1.0 d). The variable num-steps-dropped records the 

number of values removed.  

The variable last-step-adjuster is then calculated as the value by which the last (oldest) value on 

daily-step-length-list can be multiplied to make the sum of values on daily-step-length-list be 

exactly 1.0 d. (For the habitat and activity selection submodel, it is probably not important that 

the trout memory lists represent exactly 1.0 d, but this adjustment allows meaningful comparison 

of trout growth, survival, and the fitness measure explained in Sect. 9.13.2 across days.) This 

variable is calculated via: 

𝑙𝑎𝑠𝑡𝑆𝑡𝑒𝑝𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟 = 1.0 + (
1.0 − 𝑠𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ − ∑𝑑𝑎𝑖𝑙𝑦𝑆𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ𝐿𝑖𝑠𝑡

𝑙𝑎𝑠𝑡𝑆𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ
) 

where last-step-length is the last value on daily-step-length-list. 

The submodel’s second step is to update the memory lists of each trout34. Each trout executes the 

same process for all lists, with one important exception. All trout use the values of num-steps-

dropped and last-step-adjuster calculated by the observer. 

For all three trout memory lists, the number of values equal to num-steps-dropped are deleted 

from the list end. Then the last values on consumption-memory-list and growth-memory-list are 

adjusted by multiplying them by last-step-adjuster. The last value on survival-memory-list is 

 
33 This part of the submodel is programmed in procedure update-trout-memories. 

34 This step is programmed in procedure update-fitness-memories-with. 



 

66 

 

adjusted by raising it to the power last-step-adjuster (V = Va where V is the last value on 

survival-memory-list and a is last-step-adjuster). 

9.13 Habitat and activity selection 
This submodel represents the primary adaptive behavior of the model trout: choosing which of 

three alternative activities to use, in which habitat cell, on each of the four time steps per day35. 

Selection of both habitat cell and activity are decided together because the choice of one depends 

on the other: which activity is best depends on what habitat is available, and which cell is best 

depends on which activity is used.  

Updating habitat and activity selection throughout the circadian cycle is an innovation in 

inSTREAM 7 that gives its simulated fish much greater ability to adapt to changes in habitat and 

biological conditions than did previous individual-based fish models (Railsback et al. 2021). This 

approach has been tested thoroughly and shown to reproduce a variety of observed patterns in 

salmonid behavior (Railsback et al. 2020). 

The submodel is executed by each model trout, using three steps explained in detail below: 

Identify which cells (the “potential destination cells”) to evaluate, 

Calculate a fitness measure for each activity at each potential destination cell, and 

Identify and use the combination of cell and activity with highest value of the fitness measure. 

Three activity alternatives are considered: 

Drift feeding (“drift”) is stationary feeding, using the drift feeding submodel (Sect. 9.22). A drift-

feeding trout may or may not occupy some of its cell’s velocity shelter resource (Sect. 9.11): if 

velocity shelter is available—defined as the cell’s value of cell-available-vel-shelter being 

greater than the square of the trout’s length—then the trout is assumed to use velocity shelter and 

its swimming speed is assumed equal to the cell’s velocity times the reach parameter reach-

shelter-speed-frac.  

Search feeding (“search”) is active searching for (e.g.) food on the stream bottom or in 

vegetation. Trout using search feeding never occupy velocity shelter and are assumed to swim at 

a speed equal to the cell’s velocity. 

Hiding (“hide”) represents behaving only to reduce predation risks, and not feeding. Trout using 

hiding have zero food intake and are assumed to have a swimming speed of zero. Hiding can be 

used while occupying a hiding place (which reduces the risk of terrestrial predation; Sect. 9.18.6) 

or without occupying a hiding place (which, for small fish, reduces the risk of predation by other 

fish; Sect. 9.19.4).  

Appropriate values of the reach parameter reach-shelter-speed-frac depend on the kind of 

velocity shelter prevalent in the reach and the extent to which it disturbs flow and creates 

velocity gradients trout can take advantage of. A number of studies have shown that “focal” 

water velocities (the velocity measured as closely as possible to the spot where a fish was drift-

feeding) are related to, but less than, the depth-averaged velocity at the same location (e.g., 

Moyle and Baltz 1985; Naman et al. 2020). However, the relations between focal and depth-

 
35 The top-level code procedure for habitat and activity selection is select-activity-and-habitat. The fitness 

measure used to rate alternatives is coded in fitness-for. 
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averaged velocities observed in such studies are not directly applicable to inSTREAM because 

(a) reach-shelter-speed-frac approximates the difference between a fish’s swimming speed and 

cell average water velocity, not depth-averaged velocity at the fish, and (b) this literature does 

not distinguish between fish that are vs. are not actually using velocity shelter for drift feeding. 

For a small, hydraulically complex stream with velocity shelter due to boulders and logs, 

Railsback and Harvey (2001) used a value of 0.3 for reach-shelter-speed-frac. For a large river 

with heavily embedded and rounded substrate, Railsback et al. (2005) used a value of 0.5. 

9.13.1 Habitat selection radius and identification of potential destination cells 

Potential destination cells are those within a radius R, the habitat selection radius, of the trout’s 

current cell; the trout is assumed to have explored and be aware of habitat conditions within the 

radius36.  

The value of R has strong effects on both inSTREAM’s results and its execution speed. Low 

values of R reduce the ability of model trout to adapt to habitat and competitive conditions by 

reducing the range of cells they select from, while too-high values can exaggerate adaptive 

ability. Because the number of cells evaluated as destinations increases approximately with R2, 

the number of computations made by inSTREAM and its execution time increase rapidly with R. 

Field observations of distances that trout move routinely can inform how we model R, even 

though they do not directly tell us the distances trout explore to evaluate habitat. We examined 

studies in which stream trout were radiotagged and located over time. Harvey et al. (1999) 

observed 18-24 cm Cutthroat Trout in a mid-sized stream, observing daily movement distances 

(maximum distance among observed locations within one day) of up to 55 m. Ovidio et al. 

(2002) observed large (28-43 cm) Brown Trout in a mid-sized stream. They observed “home 

ranges” of up to 500 m, with a mean of 50 m. They also observed more movement in warmer 

seasons but no relation between home ranges and trout size. Hilderbrand and Kershner (2000) 

observed adult Cutthroat Trout in a first-order stream; their one set of observations within a 

single day found movement up to 120 m. Diana et al. (2004) observed large (44-58 cm length) 

Brown Trout in a mid-sized river where concealment cover was scarce. They observed trout 

locations at random times over many days, and also observed locations of three individuals 

hourly for 24 h, on 36 occasions. While Diana et al. found trout to use multiple “home sites” that 

were up to 3.5 km apart over a year, they also estimated distances trout moved for foraging 

within a day. In nine trout, the median of this distance was often zero but ranged up to 120 m; the 

maximum distance ranged 5-650 m, but only two trout moved more than 170 m. Diana et al. 

(2004) found that the distance trout moved at night (presumably for foraging, from daytime 

concealment) was negatively correlated with stream gradient. 

These observations lead to several conclusions and assumptions. First, our model of R relies on 

observations of routine habitat selection movements, not the longer migrations sometimes 

observed in the field, often associated with spawning. InSTREAM does not represent such 

migrations. Second, it may not be safe to assume lower R in smaller streams: narrower streams 

provide less habitat within the same radius. Third, R may not vary with trout size for adults; it is 

unlikely that habitat selection movement is limited by swimming ability and size. However, for 

small juveniles habitat exploration could very well be limited by swimming ability, so it seems 

 
36 The habitat selection radius is calculated in update-logistics, using a logistic function created in build-

logistic-functions. 
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safe to assume that R increases rapidly with size at small lengths. Fourth, for large trout habitat 

conditions such as gradient and availability of concealment cover could affect how far they move 

among feeding and concealment sites. 

R is therefore modeled as a logistic function of trout length: 

R = trout-move-radius-max × logistic(trout-length). 

The parameters are: trout-move-radius-max (cm), the maximum radius; and trout-move-radius-

L1 and trout-move-radius-L9, the trout lengths (cm) at which R is 0.1 and 0.9 of trout-move-

radius-max. Values of 15,000 cm (150 m) for trout-move-radius-max, 6 cm for trout-move-

radius-L1, and 20 cm for trout-move-radius-L9 produce results compatible with the literature 

cited above. However, users are encouraged to re-evaluate these parameters using site-specific 

evidence or judgement of habitat exploration distances. 

 

Figure 8. Logistic relation between trout length and habitat selection radius R, with values of 

15,000, 6, and 20 cm for trout-move-radius-max, trout-move-radius-L1, and trout-move-radius-

L9. Note that the Y axis shows R in m, not cm. 

 

The trout creates a list of potential destination cells in three steps.  

First, the list includes those cells with centroids within a radius R of the centroid of the trout’s 

current cell. This step uses the distance conventions of Sect. 2.2.9. 

Second, the potential destination cells always include all cells adjacent to the trout’s current cell 

(sharing a side or vertex), so even the smallest trout can always consider at least adjacent cells. 

Any adjacent cells not already on the list are added to it. 

Finally, any cells on the list with depth of zero are removed from it; this precludes trout from 

considering or occupying dry cells. However, if all cells on the list have zero depth, then the only 

cell left on the list is the trout’s current cell (the trout will be forced to remain in its current dry 

cell).  

 (An alternative version of inSTREAM 7 also requires that there be a way for the trout to get 

from its current cell to the destination cell by passing only through cells that have depth greater 
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than zero, which excludes isolated wet cells surrounded by dry cells as destinations. This 

criterion could be important for sites with extensive shallow habitat or side channels.) 

9.13.2 Evaluation of expected fitness 

In this step, the trout calculates its fitness measure—an approximation of its expected future 

survival and reproductive potential—for each of the three activity alternatives at each of the 

potential destination cells. Evaluating the fitness measure is complex and uses many of the other 

submodels (Figure 9). 

 

 

Figure 9: Submodels used in habitat and activity selection. Evaluating the fitness measure used 

to rate combinations of activity and habitat cell requires calculating the growth rate and survival 

probability that a trout would obtain, which requires many of inSTREAM’s submodels. 

 

The fitness measure can be summarized with three terms: 

𝐹 = 𝑃 × 𝑆 × 𝑅 

where F is the fitness measure value, P is the expected probability of surviving predation and all 

other mortality risks except starvation (Sect. 9.14) until a future time horizon, S is the expected 

probability of surviving starvation (poor condition) until the time horizon, and R is a 

reproductive success term. (See the end of this section for an exception: how F is determined for 

cells with velocity exceeding the fish’s swimming ability.) P, S, and R are all functions of the 

trout, the activity, and the habitat cell for which the measure is evaluated, as explained below. All 

range from 0.0 to 1.0, so F is always between 0.0 and 1.0. 
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The time horizon T is a “sliding” time horizon that is always a constant number of days in the 

future. This number of days is specified by the trout parameter trout-fitness-horizon. The time 

horizon controls the balance of starvation and non-starvation survival. When the horizon is low 

(<40 d, in simulation experiments), trout give less emphasis to starvation in their decisions 

because the risk of starvation over a short time period is low (except when condition is extremely 

low; Sect. 9.17). Trout therefore sacrifice condition to avoid predation risk (trout-condition falls 

below 1.0), and as their condition decreases the trout suffer poor condition mortality. At higher 

values of the time horizon, the poor condition survival submodel (Sect. 9.17) produces high risk 

of starvation unless trout feed enough to keep their condition near 1.0. This produces a good 

balance between feeding and avoiding risk and, therefore, higher trout abundance and biomass 

than do low time horizons. A simulation experiment examining sensitivity to trout-fitness-

horizon found highest values of trout abundance and biomass over a range of values ~40–90 d 

(Figure 10). We recommend a value of 60 d. (The value of trout-fitness-horizon does not affect 

model execution time.) 

 

Figure 10: Sensitivity of predicted trout abundance and mean length to the parameter trout-

fitness-horizon. Mean results over the last 8 years of 10-year simulations at the “RESTORED” 

site of Railsback et al. (2021). 

 

The fitness measure uses the simplifying approximation that the growth and survival conditions 

experienced over the 1.0-day period ending with the current time step would persist until the 

time horizon. The daily growth rate and survival probability are determined by combining the 

conditions experienced by the trout in previous time steps with what it would experience in the 

current time step for the combination of activity and cell under consideration. The model trout 

maintain a “memory” of the non-starvation survival probabilities (Pi, for i = 1 to n) and growth 

rates (Gi) they experienced with the habitat cell and activity they chose in each of the n phases 

preceding the current one (Sect. 9.12). (For a normal circadian cycle with four time steps per day, 

n is 3.) For example, when a trout is selecting habitat and activity at the start of a daytime phase, 

Pi and Gi are the non-starvation survival probabilities and growth rates experienced in the 

trout-fitness-horizon
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previous dawn, night, and dusk phases. These memories are combined with the survival and 

growth rates for the alternatives being considered for the current phase to determine the overall 

rates for a full circadian cycle, adjusting for the duration of each phase. 

The 1.0-day growth rate used to evaluate the fitness measure, GD, is calculated as: 

𝐺𝐷 = (∑𝐺𝑖

𝑛

𝑖=1

𝑑𝑖) + (𝐺𝑐𝑑𝐶) 

where Gi are the growth rates (g/d) experienced in the n previous time steps of a 1.0 day period 

that ends at the end of the current time step, di are the durations (d) of each such time step, GC is 

the growth rate (g/d) for the current time step, and dC is the duration (d) of the current time step 

(equivalent to the observer variable step-length). When selecting activity and habitat, the first 

term of this equation is calculated only once per trout per time step, while the second term and 

GD are evaluated for each combination of activity and cell being considered. 

Similarly, the 1.0-day non-starvation survival probability used in the fitness measure, PD, is: 

𝑃𝐷 = (∏(𝑃𝑖)
𝑑𝑖

𝑛

𝑖=1

) (𝑃𝑐)
𝑑𝐶 

where Pi are the daily non-starvation survival probabilities experienced by the trout in the n 

previous time steps and PC is the non-starvation survival probability for the current time step. 

Again, the first term of the equation is constant over all the combinations of activity and cell 

being evaluated at one time step. 

The fitness measure’s term for expected probability of surviving predation and other non-

starvation risk until the time horizon T days in the future uses the approximation that the survival 

probability for the current full day would persist to the time horizon. Therefore, the term is: P = 

PD
T.  

The term for expected probability of surviving starvation until the time horizon is more 

complicated because starvation is a function of the trout’s condition (trout-condition; Sect. 4.1.4) 

and how condition changes from the current time step to the time horizon. The expected 

probability of surviving starvation until the time horizon is calculated by projecting the trajectory 

of trout-condition (abbreviated here as K) from the current time until T. This projection assumes 

that the daily growth rate GD will persist until the time horizon. Under this assumption and the 

restrictions that K cannot be above 1.0 (weight gain when K = 1.0 produces growth in length that 

keeps K at 1.0) or below 0.0, there are seven possible kinds of trajectory in K over a time 

horizon, depending on its initial value and whether GD is positive or negative (left panel, Figure 

11). If GD is positive, K increases linearly until it reaches 1.0 or the time horizon is reached; if 

GD is negative, K decreases linearly until it reaches 0.0 or the time horizon is reached. With our 

linear model of low condition mortality, the projected daily probabilities St of surviving this 

mortality follow similar trajectories (right panel, Figure 11). 
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Figure 11: Possible trajectories in trout-condition (left) and the resulting trajectories in daily 

survival probability for low condition mortality (right), over a time horizon (trout-fitness-

horizon) of 90 d. 

 

The probability S of surviving low condition until the time horizon can be calculated exactly by 

calculating the projected daily values of Kt and St and multiplying the values of St together (i.e., 

multiplying together all the dots on a trajectory in the right panel of Figure 11). However, for 

computational efficiency we approximate S as Sm
T, where Sm is the first moment of the survival 

trajectory: the area underneath a trajectory in the right panel of Figure 11 divided by T (which is 

90 d in Figure 11). In a comparison of 100,000 randomly-generated trajectories such as those in 

Figure 11, this first moment method produced results very close to the exact calculation, with a 

maximum difference in predicted survival between the methods of 0.016. 

We use an algorithm to project the future trajectory of K and St, and the area under the trajectory 

of St, from the current condition (K1) and GD. In this algorithm, the value of survival for any 

value of K is calculated using the low condition mortality function of Sect. 9.1737.  

If K1 is 1.0 and GD is zero or positive, then K and St are 1.0 for all days to the time horizon. In 

this case, S = 1.0. 

If GD is near zero, then K and St are equal to K1 and S1 for all days to the time horizon. We define 

“near zero” as GD having an absolute value less than 0.0001 g/d, which produces negligible 

growth over a 90-day time horizon even for a newly emerged trout. In this case, S = S1
T. 

For the remaining steps, convert GD  to a daily rate of change in condition, ΔK. The value of ΔK 

is GD  divided the weight of a healthy trout of the current length (weight of a trout with the length 

trout-length and K of 1.0). 

If GD is negative, calculate the time (in days from the current time) at which K reaches zero 

(tK=0): 𝑡𝐾=0 = 𝐾1 (−1 × 𝛥𝐾)⁄ .  

If  tK=0 is less than or equal to T, K reaches zero before the time horizon. The area under the 

survival trajectory is equal to the sum of the areas of (a) the trapezoid defined by survival 

decreasing from S1 to the survival probability when K is 0.0 (SK=0) over the time tK=0, and (b) the 

rectangle with height equal to SK=0 and width equal to T – tK=0. 

 
37 This algorithm is implemented in the code procedure mean-condition-survival-with. 
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If  tK=0 is greater than T, K stays above zero until the time horizon. The condition at T, KT, is 

calculated as: 𝐾𝑇 = 𝐾1 + (𝑇 × 𝛥𝐾). The area under the survival trajectory is then equal to the 

area of the trapezoid defined by survival decreasing from S1 to the survival probability at KT over 

the time T. 

If GD is positive, calculate the time at which K reaches 1.0 (tK=1): 𝑡𝐾=1 = (1.0 − 𝐾1) 𝛥𝐾⁄ .  (The 

case in which K1 is 1.0 is handled at step 1.) 

If  tK=1 is less than or equal to T, K reaches 1.0 before the time horizon. The area under the 

survival trajectory is therefore equal to the sum of the areas of (a) the trapezoid defined by 

survival increasing from S1 to 1.0 over the time tK=1, and (b) the rectangle with height equal to 

1.0 and width equal to T – tK=1. 

If  tK=1 is greater than T, K stays below 1.0 until the time horizon. The condition at T, KT, is 

calculated as: 𝐾𝑇 = 𝐾1 + (𝑇 × 𝛥𝐾)and the area under the survival trajectory is the area of the 

trapezoid defined by survival increasing from S1 to the survival probability at KT over the time T. 

(In this algorithm, with the linear model of low condition mortality of Sect. 9.17, daily survival is 

well above zero when a trout’s weight is projected to zero. This assumption is certainly 

unrealistic but still useful because it produces behavior causing model trout to keep their 

condition high.) 

The fitness measure’s reproduction term R represents the benefits of trout size to future fitness. 

InSTREAM 7 retains the reproduction term of most previous versions (and Railsback et al. 

1999), which uses reaching a target length as the measure of reproductive benefit. Previous 

versions of inSTREAM (through version 7.2) used the minimum length for spawning (trout-

spawn-min-length, Sect. 9.27.1) as the target length, but that approach does not always produce 

realistic length distributions of adult trout in inSTREAM 7. Starting with version 7.3, the target 

length is a parameter trout-fitness-length (cm), which represents the length at which further 

growth does not provide substantially increased fitness. The term R is evaluated by first 

projecting the trout’s expected length at the time horizon LT: if KT is 1.0, then LT is the length of a 

healthy fish with weight WT, as determined from the methods in Sect. 9.20; otherwise, the trout is 

not expected to grow in length to the time horizon so LT is equal to trout-length. The value of R 

is then 1.0 if LT  equals or exceeds trout-fitness-length, and otherwise is LT  / trout-fitness-

length. 

Trout-fitness-length can be given a value approximating the size of a large adult. Except under 

poor growth conditions, the lengths of the largest model trout will exceed this parameter’s value. 

Its value can be adjusted to produce realistic lengths of older adults, but trout-fitness-length 

should at least equal trout-spawn-min-length. This parameter can also affect simulated trout 

abundance, so its value should be set before or as part of calibration (Sect. 24).  

An exception to the above methods for calculating F is made for cells where the trout would 

have to swim at a speed higher than its maximum sustainable speed. This exception is the only 

method in inSTREAM 7 that essentially restricts trout from using such cells. The exception is a 

set of simple rules: if the cell’s velocity exceeds the trout’s maximum sustainable swimming 

speed in the cell (Sect. 9.26), then F for the “search” activity is set to 0.0; and if the speed at 

which a drift-feeding trout would have to swim in the cell (which depends on whether sufficient 

velocity shelter for the trout is available, which depends on trout length; sects. 9.11, 9.13) 

exceeds the trout’s maximum sustainable swimming speed, then F for the “drift” activity is set to 
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0.0. Cell velocity does not affect fitness for the “hide” activity because hiding trout are assumed 

not exposed to the water column velocity. (Previous versions of inSTREAM used a “high 

velocity” mortality source to discourage fish from using cells where they would exceed their 

maximum swimming speed. The inSTREAM 7 approach described here is simpler and requires 

less computation.)  

It is possible for simulated trout to have access to no cells where they could swim at less than 

their maximum sustainable speed. In that situation, trout select the hiding activity because it 

always offers F > 0.0. This behavior allows trout to hide through temporary high-flow events. 

However, the trout most likely to be in this situation are newly emerged fry that find no cells 

with velocity below their maximum swimming speeds near their natal cell. Such trout will select 

the hiding activity but also select the shallowest available cell, because lower depth reduces their 

risk of predation by fish (Sect. 9.19.2). Seeking the lowest depth over several time steps allows 

such trout to move toward shallower cells where velocities are more likely to allow feeding.  

9.13.3 Selection and implementation of the best alternative 

Once the trout has evaluated the fitness measure for all combinations of cell and activity, it 

identifies the combination offering highest fitness. (In the unlikely case of multiple combinations 

offering the same fitness, one is selected randomly.) The trout then occupies the cell and depletes 

the cell resources for the selected activity (Sect. 9.11). The trout then also updates its memory 

lists (Sect. 9.12): the food consumption it experiences with the selected cell and activity (g food 

consumed during the time step; zero if the activity is hiding) is added as the first item on 

consumption-memory-list, the growth rate it experiences (g/d) is added to the beginning of 

growth-memory-list, and the survival probability it experiences is added to the beginning of 

survival-memory-list. 

9.14 Trout survival 
The survival submodel simulates whether and why trout survive or die. Each trout executes it 

each time step38.  

The mortality submodels are used not only by this trout survival submodel but also in the habitat 

and activity selection submodel (Sect. 9.13); the predation and condition mortality submodels 

have especially strong effects on habitat and activity selection, which then affects growth and 

survival. Users should therefore be aware that changes to these submodels and their parameters 

will affect how model trout behave as well as how many of them die of what causes. For 

example, changing parameter values to make survival of predation by terrestrial animals higher 

at shallow depths may increase trout survival but it also allows trout to adjust their tradeoff 

between growth and risk so they make more use of shallow habitat that, while less risky, is still 

risky; as a consequence of this behavior, the parameter change may result in less-than-expected 

change in survival but an increase in growth. 

The mortality submodels make extensive use of logistic functions, which have several useful 

characteristics. Their shape can represent the way many variables affecting survival are benign 

over a wide range of values, then have sharply increasing effects, and then can cause near-

complete mortality over a wide range of extreme values. Logistic functions can be fit to 

observations of survival using logistic regression. They also produce survival probabilities that 

 
38 The submodel is coded in procedure survive. Supporting code that updates the logistic functions used in 

survival submodels is in update-logistics. 
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approach 0.0 asymptotically as conditions become worse, allowing model fish to make good 

decisions even when all the alternatives are bad. Conversely, however, logistic survival 

probabilities are never 100% so some mortality occurs randomly even under benign conditions. 

The survival submodel executes two simple steps for each of the trout mortality sources. The 

order in which the different mortality sources are simulated is specified in the model schedule 

(Sect. 5). 

The first step is to calculate the probability of the trout surviving the mortality source for the 

current time step. The daily survival probability is obtained from the relevant mortality submodel 

(sects. 9.15 through 9.19), and then adjusted for time step length: Sts = Sd
step-length where Sts  is the 

probability of surviving the time step and Sd is the daily survival probability from the mortality 

submodel. 

The second step is to execute a random Bernoulli trial to determine whether the trout survives the 

mortality source. A random floating point number between 0.0 and 1.0 is drawn and the trout 

dies if the random number is greater than the survival probability Sts. If the trout dies, it is 

immediately removed from the model and executes no further actions, so it cannot possibly die 

of a subsequent kind of mortality. Consequently, the number of trout dying of each mortality 

source depends (though, normally, relatively little) on the order in which the sources are 

scheduled in the survival submodel. 

If the trout does not die of any of the mortality sources, it survives and is unaffected by the 

submodel. 

(Previous versions of inSTREAM included a “high velocity” mortality source, which is not 

included in inSTREAM 7. That mortality source decreased survival for fish using cells where 

their swimming speed was high in comparison to their maximum sustainable swimming speed; it 

was used to discourage trout from selecting such cells. InSTREAM 7 uses a simpler method—

assuming zero fitness if the maximum swimming speed is exceeded, Sect. 9.13.2—for the same 

purpose.) 

9.15 High temperature trout mortality 
This mortality source represents the acute breakdown of physiological processes at high 

temperatures39. It does not represent chronic effects of high temperatures on bioenergetics, which 

are instead captured in the growth and low condition mortality submodels. High temperature 

mortality also does not represent the effect of disease even though fish are probably more 

susceptible to disease at high temperatures. Instead, disease is modeled as part of poor condition 

mortality; a fish able to maintain its weight at sublethal temperatures is assumed to remain 

healthy. 

Temporal resolution can be important to modeling temperature mortality: fish may be able to 

survive temperatures for short periods that would cause high mortality over longer times. 

InSTREAM 7 can use temperature input of daily values or separate values for each time step 

(e.g., by using hourly data; Sect. 8), so parameters could be adjusted to reflect the resolution of 

input. For example, if input is daily mean temperature, then parameter values could be chosen to 

reflect the assumption that daily peak temperatures are higher than the input (although the 

relative importance of mean v. maximum temperature is not clear; Dickerson and Vinyard 1999, 

 
39 High temperature survival is programmed in the procedure survival-high-temperature-for. 



 

76 

 

Hokanson et al. 1977). The temperature mortality parameters can be re-evaluated for sites with 

particularly high or low diurnal temperature variations. 

High temperature mortality has been addressed by numerous laboratory studies, but models of 

this mortality remain variable and uncertain because susceptibility varies with laboratory 

conditions and techniques and the endpoints used to define mortality, between laboratory and 

field conditions, and among individuals. Available literature (e.g., Behnke 1992; Myrick and 

Cech 2004) indicates that any differences in measured lethal temperatures among trout species 

are not clearly distinguishable from uncertainty and variability in the measurements. Myrick 

(1998) found approximately 60 percent survival of well-fed golden trout (Oncorhynchus mykiss) 

juveniles over a 30-d period at a constant 24°, equivalent to a daily survival of 0.98. Dickerson 

and Vinyard (1999) measured survival of Lahontan Cutthroat Trout (O. clarki) for 7 d at high 

temperatures, finding zero survival at 28°, 40 percent survival at 26° (equivalent to daily survival 

of 0.88), and 100 percent survival at 24°. This literature indicates that high temperature mortality 

can be modeled well as a logistic function.  

The daily survival probability for high temperature mortality is therefore modeled as a logistic 

function of the reach variable temperature, with its shape defined by the trout parameters mort-

high-temp-T1 and mort-high-temp-T9. The parameters in Table 8 (illustrated in Figure 12) 

appear suitable for sites with relatively low diurnal variation in temperature; they produce daily 

survival of 0.98 at 24°, 0.88 at 26°, and < 0.5 at 28°.  

Table 8: Parameters and values for high temperature mortality 

Parameter 

name 

Definition Basis Standard 

value 

mort-high-

temp-T1 

Temperature at which daily survival 

probability for high temperature 

mortality is 0.1 

Oncorhynchus spp. 

literature cited above. 

30 

mort-high-

temp-T9 

Temperature at which high temperature 

survival is 0.9 

 25.8 
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Figure 12: Survival submodel for high temperature, using the parameter values in Table 8, 

showing daily survival and the corresponding probability of surviving for 12 hours and 10 days. 

 

9.16 Stranding trout mortality 
The stranding mortality submodel represents the risk of being trapped in a cell that is not 

submerged at the current flow; stranding can be a concern when flows change rapidly40. Previous 

versions of inSTREAM represented survival of stranding as a logistic function that decreased as 

the ratio of cell depth to fish length decreased, reflecting (a) that cell beds are typically sloped so 

they gradually dry as flow approaches and declines below that at which simulated cell depth 

reaches zero, (b) the need of larger fish for greater depth to avoid stranding, and (c) a continually 

increasing risk of predation (due to, especially, wading birds and snakes) as depth decreases. 

However, that formulation had two problems: it mixed mortality due to terrestrial predators with 

stranding, and it could produce substantial levels of stranding mortality even under conditions 

when actual stranding would be assumed negligible. 

To avoid these problems, stranding mortality is modeled in inSTREAM 7 using a simple, binary 

approach that assumes stranding mortality happens only when depth is zero: if cell-depth > 0.0, 

then survival is 1.0, and if cell-depth = 0.0 then survival of stranding is equal to the trout 

parameter mort-strand-survival-when-dry. This can happen only when a trout occupies a cell 

that becomes dry when flow decreases, because trout are not allowed to move to a dry cell (Sect. 

9.13.1). This parameter is given a standard value of 0.5 to reflect that cells where mean depth 

recently dropped to zero may still include some water. Small trout are more vulnerable to this 

mortality source because the distance they can move to avoid stranding is less than for large trout 

(Sect. 9.13.1). 

9.17 Low condition trout mortality 
Trout in poor condition (with low values of trout-condition, weight in relation to length) are at 

risk of starvation, disease, and increased vulnerability to predators41. (In addition, low condition 

makes trout less able to grow and reproduce, additional negative effects on fitness.) These risks 

are combined in the low condition survival probability. This mortality submodel is especially 

important because of its role in the habitat and activity selection submodel (Sect. 9.13.2): model 

trout make decisions trading off growth and predation risk by balancing predation survival 

against low condition survival. Therefore, seemingly small changes to this submodel can 

strongly affect trout behavior and simulated population dynamics even if they do not produce 

widespread low condition mortality. 

Simpkins et al. (2003a, b) studied starvation mortality in large juvenile trout, finding:  

Trout can survive for long periods (over 147 d, in some cases) with no food, 

Survival is lower at higher swimming activity and temperature (which both increase 

metabolism), 

Relative weight (equivalent to trout-condition) decreases linearly over time during starvation, but 

 
40 Stranding survival is programmed in the procedure survival-stranding-for. 

41 Low condition survival is in the code procedure survival-condition-for. 
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Mortality is predicted better by an index of lipid content than by trout-condition; one reason is 

that lipids are replaced by water as energy stores decrease. 

Modeling how body lipids are depleted and replaced by water would add considerable 

complexity and uncertainty to inSTREAM, as these processes are not well understood. Instead, 

low condition survival probability is represented as simple function of trout-condition that 

produces reasonable probabilities of surviving over several days and weeks.  

InSTREAM 7 models low condition mortality differently than previous versions. Previous 

versions of inSTREAM represented survival of low condition as a logistic function of trout-

condition that produced high (but not 100%) survival over high values of trout-condition but 

rapidly decreasing survival at trout-condition values below about 0.7. The logistic function’s low 

gradient of survival with trout-condition near condition = 1.0 gave trout little incentive to keep 

condition high, which can prevent individuals from growing in length (Sect. 9.20) or spawning 

(Sect. 9.27.1). This limitation had much stronger effects in inSTREAM 7, which gives model 

trout more precise ability to balance starvation and other risks. To prevent this problem and to 

avoid the possibility of low condition mortality when trout-condition is 1.0, inSTREAM 7 uses a 

linear relation between survival probability and trout-condition. This relation is defined by the 

parameter mort-condition-S-at-K5, the probability of surviving low condition mortality for one 

day when trout-condition is equal to 0.5. The submodel represents condition survival probability 

as a straight line defined by two points: the value of this parameter when condition is 0.5 and 

survival of 1.0 when condition is 1.0. The linear relation between condition and daily survival 

produces an exponential relation between condition and the probability of surviving over a future 

period (Figure 13). 

The value of mort-condition-S-at-K5 controls the emphasis given to maintaining high condition 

versus avoiding predation risk in trout behavior. Our explorations of the submodel and its effects 

on habitat and activity selection behavior indicate that values of 0.98 produce reasonable 

tradeoffs (Figure 13): model trout will still reduce their condition to avoid high risk, but will 

otherwise feed enough to keep condition near 1.0 and continue growing. Higher values (e.g., 

0.99) make model trout even more willing to avoid risk by maintaining lower condition but, 

therefore, less able to grow or spawn. 

The assumption that daily survival is 0.98 when trout-condition is 0.5 may seem more generous 

than it is. Low condition is a unique mortality source in that fish can never increase their survival 

probability immediately by selecting different habitat or activity. Fish in poor condition have a 

strong incentive to select rapid growth so their condition increases; however, recovering 

condition requires high growth for a number of days. Even apparently high daily survival 

probabilities for this mortality source result in a substantial risk of dying before normal weight 

can be regained. For example, an adult trout that has its value of trout-condition reduced to 0.8 

by spawning (Sect. 9.28) and regains its condition at a steady rate of 0.5% per day has a 83% 

probability of surviving low condition mortality over the 45 days needed to regain trout-

condition of 1.0 (and is typically also exposed to an equivalent level of predation risk).  
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Figure 13: Probability of surviving low condition mortality for 1, 30, and 90 days, with mort-

condition-S-at-K5 = 0.98. The 30- and 90-day curves assumed that condition is constant over 

those periods at the X axis value. 

9.18 Terrestrial predation trout mortality 
Predation by terrestrial animals is a dominant source of mortality to trout, especially adults 

(Alexander 1979, Harvey and Stewart 1991, Metcalfe et al. 1999, Quinn and Buck 2001, 

Valdimarsson et al. 1997)42. The terrestrial predation formulation represents predation by a mix 

of such predators as otters, raccoons, snakes, herons, mergansers, kingfishers, and dippers. 

Common characteristics of terrestrial predators that affect the survival probability function 

include their: large size compared to trout, limited swimming ability, dependence on locating fish 

from above water, and warm-blooded physiology. These characteristics vary among predators, 

but lead to these generalizations about terrestrial predation:  

Risk does not necessarily decrease with trout size,  

Risk persists year-round because warm-blooded predators feed as much or more in winter 

(except those that hibernate or migrate),  

Trout are more at risk when more visible from the air, and 

Trout face higher risk at higher light levels (during daytime) and when feeding versus hiding.  

(Ice cover in winter can strongly limit terrestrial predation, but inSTREAM 7 does not represent 

this process; Sect. 1.2.)  

The formulation assumes a minimum survival probability that applies when fish are most 

vulnerable to terrestrial predation, and a number of “survival increase functions” that can 

increase the probability of survival above this minimum. Survival increase functions have values 

(termed “survival increase”) between zero and one, with higher values for greater protection 

from predation. InSTREAM 7, unlike previous versions, assumes that survival increase functions 

interact: several survival increase functions that have moderate benefits can combine to reduce 

risk by more than each function does by itself. The interaction among survival increase functions 

is modeled by treating each function’s survival increase as a probability and calculating the joint 

probability of surviving all of them. This assumption is expressed mathematically as: 

 
42 Survival of terrestrial predation is programmed in the procedure survival-terr-pred-for. 
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𝑆𝑇 = 𝑟𝑒𝑎𝑐ℎ𝑇𝑒𝑟𝑟𝑃𝑟𝑒𝑑𝑀𝑖𝑛 + ((1.0 − 𝑟𝑒𝑎𝑐ℎ𝑇𝑒𝑟𝑟𝑃𝑟𝑒𝑑𝑀𝑖𝑛) × (1.0 −∏(1.0 − 𝐼𝑖)

𝑖=𝑛

𝑖=1

)) 

where ST is the daily probability of surviving terrestrial predation, reach-terr-pred-min is a reach 

parameter representing the daily survival probability in the riskiest combination of habitat and 

activity, and Ii represents the n survival increase functions, described below. The value of reach-

terr-pred-min is typically estimated by calibration of model results to trout abundance 

observations. Unlike almost all other survival parameters, reach-terr-pred-min is a reach 

parameter instead of a trout parameter, so that it can be varied among reaches with different 

levels of predation but not among trout species. As a consequence, any differences among 

species in predation vulnerability must be represented via the survival increase function 

parameters, which can differ among species.  

InSTREAM results can be quite sensitive to terrestrial predation parameter values (Sect. 26.2). 

This sensitivity is not surprising, considering that terrestrial predation often causes most adult 

mortality. The parameters that define the survival increase functions for depth, velocity, and 

distance to escape cover have especially strong effects. If these parameters are set in such a way 

that the survival increase function is very close to 1.0 in several or many cells, then trout 

occupying those cells can be almost immune to mortality. For example, if the “small stream” 

parameters for depth illustrated in Figure 26 were used in a large river with many cells having 

depth greater than 200 cm, then trout in these cells would have very low terrestrial predation risk 

and could live for many years. Changing the parameters for the depth function could greatly 

change the amount of habitat with very low predation risk. (In reality, rivers with extensive deep 

water also likely have predators that can be effective in deep water.) Likewise, if the velocity and 

distance to escape cover survival increase functions are very steep and near 1.0 for some cells, 

some parts of the simulated habitat can be nearly risk-free, producing higher populations of adult 

trout. 

The following survival increase functions are included in the terrestrial predation mortality 

submodel. Suggested parameter values are provided at the end of the section (Table 9). The 

design of the terrestrial predation submodel (and its software) make it easy to add new survival 

increase functions. Existing functions can be essentially turned off (so they have negligible effect 

on survival) by setting their parameter values to yield function values near zero, e.g., by setting 

the parameter for survival increase of 0.1 to -100 and survival increase of 0.9 to -120 for a 

variable that has only positive values. 

9.18.1 Trout length 

Small fish are assumed less vulnerable to terrestrial predation because they are less visible 

(Power 1987), less desirable, and possibly more difficult to capture, than larger fish. For 

example, Hodgens et al. (2004) reported that 48 trout eaten by heron ranged 3-38 cm in length, 

but 85% were between 10 and 28 cm; Collis et al. (2001) found that cormorants and terns 

feeding on outmigrating salmon and steelhead selected for the largest species; Källo et al. (2023) 

found cormorant predation risk for migrating trout to depend significantly on trout length, with 

highest risk at 35-43 cm. On the other hand, dippers are terrestrial predators that select trout fry 

(Thut 1970), so even very small fish can face risk from terrestrial predation. Therefore, survival 
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of terrestrial predation is often best assumed to decrease with fish length, with no size enjoying 

complete protection (Figure 14).  

Several factors influence the determination of parameter values for this function. One is the kind 

of predators believed most important and their prey size-selectivity.  

Another consideration for parameterizing fish predation survival is the availability and kind of 

hiding cover in locations likely to be occupied by juvenile trout.  While the model explicitly 

represents hiding or concealment cover for adults (Sect. 9.18.6), the trout length function 

addressed here is the way that inSTREAM7 (indirectly) represents hiding cover for small trout. 

If habitat that provides abundant hiding places for small trout is widespread in shallow habitat 

where small trout are likely to be, then this length function should be parameterized to provide 

relative safety to fish small enough to use that cover and not to fish too large to use it. For 

example, if small boulders and large cobble provide abundant crevices for trout up to ~8 cm 

length, then this function should be parameterized so that trout are relatively safe at lengths 

below, but not above, 8 cm. On the other hand, if the only cover for small fish is unembedded 

small cobble, then only very small trout (e.g., < 4 cm) can be assumed safe because of it. 

 

Figure 14: Survival increase function for effect of trout length on terrestrial predation mortality, 

using the parameter values from Table 9. Trout fry are typically born with a length >2.5 cm 

(Sect. 9.38), so none have a function value above about 0.95. 

 

9.18.2 Depth 

Fish are more vulnerable to terrestrial predators when in shallow water (Harvey and Stewart 

1991), where they are easier for predators to locate and catch. The depth survival increase 

function is an increasing logistic curve: survival increases as cell-depth increases (Figure 15). 

This function represents the direct effect of depth on predation risk, not the indirect effect of 

lower light levels caused by depth; light is treated as a separate function (Sect. 9.18.4). (Note that 

inSTREAM 7, unlike previous versions, does not include high risk of terrestrial predation when 

fish are in near-zero depths as part of stranding mortality; Sect. 9.16.) 

A variety of literature supports our parameter values. Power (1987) indicates that predation by 

birds is low at depths above 20 cm, and Hodgens et al. (2004) report that 85% of successful 

strikes by herons were at depths less than 20 cm but some were at depths up to 50 cm. However, 

predators that are larger or better swimmers (mergansers, otters) are effective at greater depths, 
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especially in clear water. Our own studies of large juveniles in pool habitat (Harvey and White 

2017) indicated that they became increasingly reluctant (required higher food reward) to use 

depths decreasing from 50 to 30 cm, and never would feed in depths as low as 20 cm.  

Appropriate values for the depth survival increase function parameters can differ among sites. 

Parameters useful in relatively small streams of coastal California (Railsback and Harvey 2001) 

provide high relative survival in depths > 1 m. However, these parameters were not useful for the 

much larger Green River in Utah, where depths can be several meters and otters are prevalent; 

separate parameters were developed for the Green River site (Railsback et al. 2006). Figure 15 

illustrates parameter values for small streams and large rivers (Table 9). 

 

Figure 15: Survival increase function for depth effect on terrestrial predation mortality, using the 

parameter values from Table 9 for small streams and large rivers. 

 

9.18.3 Velocity 

Water velocity is assumed to have an effect similar to that of depth, making trout harder for 

predators to see and capture. Predators with limited swimming ability (e.g., snakes) may be 

unable to maneuver effectively at high velocities. Predators such as birds that depend on seeing 

trout from above the water may be most affected by how velocity interacts with other factors 

such as substrate type and water surface slope to make the water surface uneven and light 

refraction high and variable. High velocities may have less effect on predator effectiveness in 

larger rivers where there is more maneuvering room and, on average, smoother water surfaces. 

We provide separate parameter values for this logistic function, representing small streams and 

large rivers (Figure 16). 
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Figure 16: Survival increase function for effect of water velocity on terrestrial predation 

mortality, using the parameter values from Table 9 for small streams and large rivers. 

 

9.18.4 Light 

This function represents how irradiance, including the effect of turbidity, affects predation 

survival. Previous versions of inSTREAM had a function for turbidity and (in some versions) a 

separate method representing how survival probability differs between day and night. This 

function is driven by cell irradiance (cell-light) and therefore combines the effect of both light 

availability and turbidity, even though these two variables could affect predation in somewhat 

different ways. 

Turbidity obviously makes fish less visible to terrestrial predators, but not all terrestrial predators 

rely entirely on vision. Turbidity has been observed to have negligible or even positive effects on 

predation risk (Gremillet et al. 2012; Hostetter et al. 2012). We assume a turbidity effect on 

terrestrial predation risk that parallels the observed effect of turbidity on the ability of fish to 

detect prey (Sect. 9.22.1), which shows the ability to detect drifting invertebrates declining 

toward zero at 40 NTUs. Fish are likely more visible than invertebrates because of their size, but 

terrestrial predators must observe prey through greater distances than must fish predators.  

Some literature addresses differences between night and day light conditions on survival. Our 

studies in small streams of coastal California (Harvey and Nakamoto 2013) found 36% of 

predator attacks on adult trout occurring at night, with birds (including owls, at night) and 

mammals being the most common predators. From a review of literature addressing this issue, 

Metcalfe et al. (1999) reached the general conclusion that otter and mink are primarily nocturnal 

but most predation is by birds, which are usually daytime predators. Metcalfe et al. (1999) 

estimated that predation risk during foraging by river fish is 150 times greater during daytime 

than at night, in a system where 90% of mortality was due to birds and fish were active and 

exposed to predation only 10% of the daytime and 90% of the nighttime. However, at sites where 

mammals cause a higher percent of the terrestrial predation mortality, the difference between 

night and daytime risks can be assumed lower. These considerations led us to standard light 

parameter values that assume a substantial reduction in risk in twilight and about an 80% 

increase in survival probability at night (Table 10; Figure 17). 
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Figure 17: Terrestrial predation survival increase function for cell irradiance, as affected by 

surface light, turbidity, and depth. Irradiance is typically > 100 during daytime, around 20 during 

twilight, and < 1.0 at night. 

 

9.18.5 Distance to escape cover 

This function represents the benefits of escape cover, as quantified by the cell variable cell-

escape-dist. The function simply assumes that the closer a trout is to a place where it can 

temporarily evade or avoid detection by a predator, the lower its risk of being killed. The value 

of escape cover is one habitat function that can occur at a spatial scale different from the cell size 

typically used in inSTREAM; escape cover need not be within a trout’s cell to provide some 

protection. Sect. 22.2 provides guidance on estimating values of cell-escape-dist. 

The benefit of escape cover to feeding fish is represented with a survival increase function that 

increases as distance to escape cover decreases. The value of cell-escape-dist can range from 

near zero, for cells where a bottom of boulders or vegetation provides almost continuous cover, 

to many meters for cells lacking bottom cover and far from the banks (e.g., extensive gravel 

bars). Very short distances to escape cover (< 100 cm) may provide nearly complete protection 

from some predators, but do not protect fish from predators that strike very quickly (e.g., some 

birds) or that could be able to extract trout from cover (e.g., otters). Cover several meters away 

may have some value for escaping from terrestrial predators that have been detected. Harvey and 

White (2017) observed, in a controlled experiment, that ~12-cm Steelhead Trout behaved as if 

escape cover reduced their fear while feeding only if within approximately one meter. Therefore, 

the effect of distance to escape cover is modeled as a decreasing logistic function of cell-escape-

dist that never provides complete protection and decreases sharply to provide relatively little 

protection at more than 100 cm (Figure 18). 
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Figure 18: Terrestrial predation survival increase function for distance to escape cover. 

 

9.18.6 Hiding activity and use of hiding places 

This function represents the reduction in predation risk for fish that select the hiding activity 

instead of feeding. For terrestrial predation, we assume that hiding activity has no survival 

benefit unless trout occupy hiding places, which are defined as places suitable for adult trout 

hiding. Therefore, this function represents the value of hiding cover for larger trout, while the 

definition of “larger” trout depends on parameter values. (See the trout length function at Sect. 

9.18.1 concerning hiding by small trout.) 

The literature and our own research (e.g., Harvey and White 2016) indicates that the willingness 

of real trout to use hiding cover and, presumably, the value of cover in reducing risk can be a 

complex function of cover characteristics, the trout’s size, and the number and characteristics of 

the other fish using the cover. Trout appear more willing to compete for hiding space than to 

share it. Harvey and White (2016) concluded from a laboratory study that the willingness of trout 

to use cover, in particular to share it with other trout, depends strongly on visual isolation among 

the individual fish. Trout seemed unwilling to use relatively large areas (much larger than the 

square of their length) that were already occupied, but salmonids have been observed hiding in 

high densities in cover complex enough to conceal them from each other, e.g., juvenile salmon 

hiding in leaf packs. Similar competition has been observed by Armstrong and Griffiths (2001) 

and Harwood et al. (2002). For this reason, inSTREAM 7 differs from previous versions by 

representing hiding cover as an integer number of separate locations in a habitat cell where a fish 

could hide in isolation.  

Whether a model trout obtains the benefits of hiding in a particular cell therefore depends on 

whether at least one hiding place is available, i.e., when the cell variable cell-available-hiding-

places is at least one (or, for superindividuals, equal to or greater than the trout’s value of trout-

superind-rep). (The competition for hiding places and updating of cell-available-hiding-places is 

described in Sect. 9.11.) Sect. 22.2 provides guidance on estimating values of cell- available-

hiding-places. 

The total number of hiding places in a cell is represented by the cell variable cell-num-hiding-

places. Some of our knowledge of how trout compete for hiding cover can be incorporated in 

inSTREAM 7 by considering it while evaluating cell-num-hiding-places in the field. This 
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variable represents the number of places in a cell where one adult trout could hide in isolation 

from other trout. Its value of course depends on the size of trout under consideration. Small 

juveniles can often use many more hiding places, e.g., crevices in relatively small cobble, so 

their use of hiding cover is not represented explicitly but implicitly in the trout length survival 

increase function (Sect. 9.18.1). Hiding places for larger trout are typically scarcer, more 

quantifiable, and more important to the population. We suggest considering one-year-old and 

larger trout in evaluating hiding places. Quantitative techniques have been developed for 

counting hiding places (e.g., Finstad et al. 2007), but cell-num-hiding-places can also be 

evaluated by mapping the estimated density of hiding places in the field. 

The survival increase function for hiding is 0.0 for fish engaged in feeding (i.e., trout-activity = 

“drift” or “search”), or for fish using the hiding activity in the absence of available hiding places. 

For individuals using a hiding place, the survival increase function has the value of the trout 

parameter mort-terr-pred-hiding-factor. The value of this parameter should depend on what 

predators are believed most important and their ability to extract fish from cover. For example, 

where otters are common, mort-terr-pred-hiding-factor will have a value sufficiently less than 

1.0 to represent their ability to extract trout from hiding cover. 

9.18.7 Parameter values and submodel exploration 

We recommend reviewing the terrestrial predation parameter values (Table 9) for every 

application of inSTREAM 7. To understand this complex submodel, we present plots showing its 

response to two key variables at a time. In the following figures, the standard parameter values 

(for large rivers) are used and trout are not hiding. Variables not explicitly varied in the plots 

have these standard values: turbidity = 5 NTU, sunlight-irradiance = 200 W/m2, reach-shading 

= 0.9, trout-length = 10 cm, trout-activity = “drift” or “search”, cell-velocity = 20 cm/s, and cell-

escape-dist = 200 cm. The value of cell-light is in all cases calculated from sunlight-irradiance, 

reach-shading, turbidity, and cell-depth (Sect. 9.10). 

An exploration of how terrestrial predation survival varies with depth, fish length, and light 

(Figure 19) illustrates how survival is relatively high for small trout but depends sharply on 

depth for trout above ~5 cm length. Decreasing light levels, from day to twilight to night, 

increase the survival probability but do not alter the shape of the relation between depth and 

survival. 

For a feeding adult trout, depth and distance to escape cover have effects similar in magnitude 

(Figure 20). Greater depth and lower distance to escape cover both sharply reduce predation risk. 
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Figure 19: Variation in terrestrial predation survival probability with trout length and cell depth, 

under three light conditions: top left: sunlight-irradiance = 200, characteristic of daytime; top 

right: sunlight-irradiance = 20, characteristic of twilight; and bottom: sunlight-irradiance = 0.9, 

night. 
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Figure 20: Variation in terrestrial predation survival with depth and distance to escape cover. 

Trout length is 10 cm, velocity is 20 cm/s, turbidity is 20 NTU, and surface irradiance is 200 

W/m2 (daytime). 

 

Table 9: Parameters and values for terrestrial predation 

Parameter 

name 

Definition Basis Standard 

value 

reach-terr-

pred-min 

Daily survival probability for 

terrestrial predation with the 

least-protective habitat and 

activity 

Typically estimated via 

calibration; typical values are 

0.90 to 0.99 

0.95 

mort-terr-pred-

L1 

The trout length (cm) at which 

survival of terrestrial predation 

increases by 0.1 

Literature discussed above 6.0 

mort-terr-pred-

L9 

The length at which survival of 

terrestrial predation increases 

by 0.9 

 3.0 

mort-terr-pred-

D1 

The depth (cm) at which 

survival of terrestrial predation 

is increased by 0.1 

Literature discussed above for 

Oncorhynchus spp. 

Small 

streams: 0.0 

Large rivers: 

0.0 

mort-terr-pred-

D9 

The depth (cm) at which 

survival of terrestrial predation 

is increased by 0.9 

 Small 

streams: 140 

Large rivers: 

200 

25 50 75 100 125 150 175 200

0

100

200

300

400

500

Depth (cm)

D
is

ta
n
c
e
 t
o
 e

s
c
a
p
e
 c

o
v
e
r 

(c
m

)  0.9
7
 

 0.
97

2
 

 0.974
 

 0.
97

4
 

 0.976
 

 0
.9

7
6

 

 0.978
 

 0.
97

8
 

 0.98
 

 0
.9

8
 

 0.982
 

 0.9
82

 

 0
.9

8
2

 
 0.984

 

 0.
98

4
 

 0
.9

8
4

 
 0.986

 

 0.986
 

 0
.9

8
6

 
 0.988

 

 0.9
88

 

 0
.9

8
8

 

 0.99
 

 0.99
 

 0
.9

9
 

 0.992 

 0.992
 

 0
.9

9
2

 

 0.994
 

 0.
99

4
 

 0
.9

9
4

 
 0.

99
6
 

 0.
99

6
 

 0
.9

9
6

 

 0.
99

8
 

 0
.9

9
8

 



 

89 

 

Parameter 

name 

Definition Basis Standard 

value 

mort-terr-pred-

V1 

The cell velocity (cm/s) at 

which terrestrial predation 

survival is increased by 0.1 

Judgment Small 

streams: 20 

Large rivers: 

20 

mort-terr-pred-

V9 

The velocity at which terrestrial 

predation survival is increased 

by 0.9 

 Small 

streams: 100 

Large rivers: 

300 

mort-terr-pred-

I1 

The value of cell-light (W/m2) 

at which terrestrial predation 

survival is increased by 0.1 

 50 

mort-terr-pred-

I9 

The value of cell-light 

increasing terrestrial predation 

survival by 0.9 

 -10 

mort-terr-pred-

H1 

The value of cell-escape-dist 

(cm) at which terrestrial 

predation survival is increased 

by 0.1 

Judgment; Harvey and White 

(2017) 

200 

mort-terr-pred-

H9 

The value of cell-escape-dist 

increasing terrestrial predation 

survival by 0.9 

 -50 

mort-terr-pred-

hiding-factor 

The fraction by which survival 

is increased by the use of 

hiding cover. 

Judgment, assuming some 

predators (e.g., otters) can 

extract trout from hiding 

cover. 

0.8 

 

9.19 Fish predation trout mortality 
The fish predation formulation represents mortality due to predation on trout by all piscivorous 

fish43. Many trout populations do not co-occur with other piscivorous fish species, in which case 

fish predation is cannibalism by large trout. Other populations—often ones affected by large-

scale threats such as climate change and invasive species—co-exist with other piscivores. The 

formulation represents the effect of adult trout density on predation survival, making this 

survival probability the only component of inSTREAM with direct density dependence. 

However, parameter values can be chosen to also reflect risk from non-trout fish that are not 

otherwise represented in inSTREAM. 

Especially at sites where trout rarely get larger than 20-30 cm, cannibalism by trout can be 

relatively rare; e.g., Railsback and Harvey (2001) reported that fewer than 1 percent of adult 

Cutthroat Trout sampled in Little Jones Creek had juveniles in their guts. However, the risk of 

 
43 Fish predation survival is in the procedure survival-fish-pred-for. 
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piscivory appears to be an important factor driving habitat selection (e.g., Brown and Moyle 

1991): avoiding predation is likely a key reason why small fish prefer shallow water. Also, there 

have been anecdotal reports of very high cannibalism rates during fry emergence in some 

salmonids.  

Considering the characteristics of piscivorous fish leads to these generalizations about fish 

predation:  

Small trout are generally more vulnerable, and risk may be negligible for large trout. However, 

the relation between trout size and risk depends on the size and species of predators.  

Fish metabolic demands depend on temperature, so their consumption of other fish may be lower 

at low temperatures.  

Piscivorous fish are large and hence at risk from terrestrial predators, so habitat with high risk of 

terrestrial predation (especially, low depth) can have low risk of fish predation. 

Because both predators and prey share the same light conditions, low light may offer less 

protection than it does for terrestrial predation. 

The fish predation survival formulation, like the terrestrial predation one, uses a minimum 

survival probability representing the riskiest conditions and survival increase functions that 

represent how fish and habitat characteristics can increase survival probability. The formulation 

is: 

𝑆𝐹 = 𝑟𝑒𝑎𝑐ℎ𝐹𝑖𝑠ℎ𝑃𝑟𝑒𝑑𝑀𝑖𝑛 + ((1.0 − 𝑟𝑒𝑎𝑐ℎ𝐹𝑖𝑠ℎ𝑃𝑟𝑒𝑑𝑀𝑖𝑛) × (1.0 −∏(1.0 − 𝐼𝑖)

𝑖=𝑛

𝑖=1

)) 

where SF is the daily probability of surviving fish predation, reach-fish-pred-min is a reach 

parameter representing survival probability in the least-protective combination of habitat and 

activity, and Ii represents the n survival increase functions described below. The value of reach-

fish-pred-min can be calibrated to observations if data representing survival of small trout are 

available. reach-fish-pred-min is a reach parameter instead of a trout parameter so it can be 

varied among reaches with different levels of predation, e.g., those with and without piscivorous 

fish other than salmonids. 

The fish predation submodel includes the following survival increase functions. Suggested 

parameter values are provided at the end of the section (Table 10). As with the terrestrial 

predation submodel, new survival increase functions are easily added and existing functions can 

be turned off by setting their parameter values to yield function values near zero. 

There is no survival increase function for distance to escape cover in the fish predation 

formulation. This decision was made because only small trout are usually vulnerable to aquatic 

predators, and small trout are capable of hiding in many places that do not offer refuge to adult 

trout (e.g., between relatively small cobbles) and hence are not well represented by the cell 

variable for distance to escape cover. There is also no survival increase function for velocity 

because we assume neither low nor high velocity would give a small trout a consistent advantage 

over a fish predator. 
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9.19.1 Trout length 

As fish grow, their swimming abilities improve and fewer piscivorous fish are big enough to 

swallow them. The length survival increase function is therefore an increasing logistic function, 

the parameters for which depend on the size of the piscivorous fish. Keeley and Grant (2001) 

provide an empirical relation between the size of piscivorous stream trout and the size of their 

fish prey. Figure 21 illustrates parameters for sites where fish predation is mainly due to trout 25-

30 cm in length. 

 

Figure 21: Fish predation survival increase function for trout length, using the parameter values 

from Table 10. 

 

9.19.2 Depth 

Fish predation survival is assumed to be high in water shallow enough to physically exclude 

large fish or place them at high risk of terrestrial predation. The depth survival increase function 

(Figure 22) is therefore a decreasing logistic function, with very high survival at depths less than 

5 cm and high survival at depths that large trout have been observed to avoid (discussed in Sect. 

9.18.2). 
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Figure 22: Fish predation survival increase function for depth, using the parameter values from 

Table 10. 

9.19.3 Light 

The survival increase function for light represents how cell light irradiance, as determined by 

surface irradiance, depth, and turbidity, affects fish predation. The relation between light 

irradiance and piscivory risk is complex but can be informed by the literature. Turbidity and low 

light levels appear to reduce the ability of piscivorous fish to detect prey fish and thus the 

encounter rate between predator and prey (Gregory and Levings 1998, Vogel and Beauchamp 

1999, DeRobertis et al. 2003). However, the same conditions make potential prey fish less able 

to detect and escape from predators. Another mechanism that can offset this reduced encounter 

rate is that turbidity also reduces the vulnerability of piscivorous fish to terrestrial predation, 

making them more likely to forage in shallow habitat commonly occupied by small fish (Vogel 

and Beauchamp 1999).  

Several publications have observed and reviewed irradiance and turbidity effects on feeding by 

piscivorous fish. Utne-Palm (2002) reviews literature and theory on how turbidity affects feeding 

in fish. Hansen et al. (2013) measure reactive distances in piscivorous Chinook Salmon and 

Cutthroat Trout preying on trout, over a range of surface irradiance in clear water. They observed 

little effect of irradiance at high levels (> 18-25 lux) and little effect at low irradiance (< 2 lux), 

but reactive distance dropped by about 50% as irradiance declined from the high to low range. 

(See Table 13 to relate lux to the irradiance measure used by inSTREAM.) Hansen et al. (2013) 

also observed this reactive distance over a range of turbidities from 0 to 7 NTU at a surface 

irradiance of 50 lux. Over this range, reactive distance decreased by about 70%. Gregory and 

Levings (1998) compared piscivory by fish in adjacent clear and turbid rivers and found 

piscivory much lower, but still present, in the turbid river. Michel et al. (2020) observed that the 

rate of predation by warmwater fish on tethered juvenile salmonids increased with temperature, 

bottom roughness (perhaps reflecting availability of cover for predators), and proximity to 

predators (which will vary with the density of predators). They also observed higher predation 

rates in the hour after sunset than during the day.  

In consideration of this literature, we suggest parameters for this function that provide no 

protection from aquatic predation at low daytime irradiances, and a 50 percent reduction in risk 

at night values (Figure 23). These parameters do not reproduce a higher risk during crepuscular 

periods as indicated by Michel et al. (2020). 
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Figure 23: Fish predation survival increase function for cell irradiance, as affected by surface 

light, turbidity, and depth. 

 

9.19.4 Hiding activity 

This function represents the reduction in fish predation risk for trout that select the hiding 

activity instead of feeding. Unlike the hiding activity function for terrestrial predation (Sect. 

9.18.6), this function assumes hiding can reduce risk even for trout not occupying a hiding place. 

We make this assumption because fish predation is mainly a risk to small trout, and small trout 

can use widespread hiding cover too small to meet our definition of hiding places (i.e., places 

where adult trout can hide; Sect. 9.18.6).  

The fish predation survival increase function for hiding is 0.0 for fish not using the hiding 

activity (i.e., trout-activity = “drift” or “search”) and the value of the parameter mort-fish-pred-

hiding-factor for hiding individuals (trout-activity = “hide”). The value of mort-fish-pred-

hiding-factor will depend on what kind of piscivorous fish are present and their ability to 

explore hiding places. The parameter value can also consider the abundance and quality of hiding 

cover useable by small fish. Sites with abundant cobble in areas often used by small trout will 

have a higher value of mort-fish-pred-hiding-factor than sites where substrate generally lacks 

hiding cover (e.g., sand, bedrock). 

9.19.5 Trout predator density 

This function adjusts the fish predation survival probability for the density of trout large enough 

to be predators44. It is, therefore, a mechanism of direct density dependence: higher adult trout 

abundance reduces the probability of juvenile trout surviving to adulthood. The importance and 

shape of this function of course depend on whether trout are the only potential fish predators; it 

represents only predation by simulated trout on other simulated trout, not the effect of other 

piscivorous fish that may be at a site but not represented in inSTREAM except via the fish 

 
44 Piscivorous trout density is updated in the procedure update-logistics. 
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predation submodel. If a site has abundant non-salmonid fish predators, then this function can be 

parameterized so that the survival probability increases little with decreasing adult abundance.  

This function assumes that survival probability decreases as the density of potentially 

piscivorous trout increases. (To avoid excess complexity, we neglect any effect of prey fish 

density on per-trout risk.) “Density of potentially piscivorous trout” is defined at the reach scale 

(reach variable pisciv-trout-density). It is the number of trout in the reach that have trout-length 

greater than both (a) the length of the trout calculating survival and (b) the fish parameter trout-

pisciv-length, divided by the total wetted area of the reach (the sum of cell-area over all the 

reach’s cells with cell-depth > 0, cm2). Trout-pisciv-length is defined as the minimum length 

(cm) of trout assumed able to eat other trout; its value can vary among trout species to reflect 

differences in piscivory. The density of potentially piscivorous trout is updated at the start of 

each time step; changes within a time step due to mortality, movement among reaches, or growth 

of large trout are neglected. If a reach is completely dry (none of its cells have depth > 0.0), then 

pisciv-trout-density is set to zero. 

The piscivorous trout density function can be parameterized by thinking about the number of 

trout within a specific area that would represent high and low predator densities. The standard 

values in Table 10, used in Figure 24, were estimated by assuming the survival increase would be 

low (0.1) with 5 piscivorous trout per 10×10 m area and high (0.9) with only 0.5 trout per the 

same area. 

 

Figure 24: Fish predation survival increase function for piscivorous trout density. 

9.19.6 Temperature 

This survival increase function assumes that survival of fish predation is higher at low 

temperatures.  This assumption is based on two mechanisms. When other trout are the only 

predators, the function represents how low temperatures reduce the metabolic demands and, 

therefore, feeding activity of piscivorous fish. In this case, the function can be based on the 

bioenergetics of the trout predators, using a function (Figure 25) that approximates the decline in 

maximum food consumption with declining temperature assumed in the feeding submodels 

(Sect. 9.24). Our standard parameters (Table 10, Figure 25) are based on this mechanism. 
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However, the second mechanism is important when fish predation is dominated by non-trout 

piscivores that do not function as well as trout at low temperatures. Parameter values can be 

chosen to reflect how metabolic rates and swimming performance of less cold-adapted predators 

drop at low temperatures. 

The temperature function is a decreasing logistic function of the reach variable temperature. 

 

Figure 25: Fish predation survival increase function for reach temperature, parameterized 

assuming trout are the only predators. 

9.19.7 Parameter values and submodel exploration 

Here we summarize the standard values for fish predation parameters (in Table 10) and explore 

the full fish predation submodel. The parameter values deserve reconsideration for each 

application of inSTREAM, especially when factors such as the presence of non-salmonid 

piscivorous fish affect the mechanisms represented in the submodel. 

Especially to understand habitat and activity selection, it is valuable to not only understand this 

submodel but also to compare it directly to the terrestrial predation submodel (Sect. 9.18). 

Terrestrial and fish predation are generally two of the most important factors driving habitat and 

activity selection, and, for some fish, act in opposite ways: habitat safe from one kind of 

predation puts individuals at risk of the other. To make this comparison, we plot fish predation 

survival probability for feeding trout under the same conditions and over the same variable 

ranges for which terrestrial predation was explored in Sect. 9.18.7.  

The plots of how fish predation survival varies with depth, fish length, and light (Figure 26) 

show key differences from terrestrial predation (Figure 19). Survival of fish predation is 

dominated by trout length, not cell depth: fish predation is important only for small trout. 
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Figure 26: Variation in fish predation survival probability with trout length and cell depth, under 

three light conditions: top left: sunlight-irradiance = 200, characteristic of daytime; top right: 

sunlight-irradiance = 20, characteristic of twilight; and bottom: sunlight-irradiance = 0.9, night. 
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Table 10: Parameters and values for fish predation 

Parameter 

name 

Definition Basis Standard value 

reach-fish-

pred-min  

Daily survival probability for 

fish predation with the least-

protective habitat and activity 

Typically estimated via 

calibration; typical values 

are 0.9 to 0.95 

0.9 

mort-fish-

pred-L1 

The trout length (cm) at which 

survival of fish predation 

increases by 0.1 

Literature discussed above 3.0 

mort-fish-

pred-L9 

The length at which survival 

of fish predation increases by 

0.9 

 6.0 

mort-fish-

pred-D1 

The depth (cm) at which 

survival of fish predation is 

increased by 0.1 

Judgment based on large 

fish use of depth 

35 

mort-fish-

pred-D9 

The depth (cm) at which 

survival of fish predation is 

increased by 0.9 

 5.0 

mort-fish-

pred-I1 

The value of cell-light 

(W/m2) at which fish 

predation survival is increased 

by 0.1 

 50 

mort-fish-

pred-I9 

The value of cell-light 

increasing fish predation 

survival by 0.9 

 -50 

mort-fish-

pred-hiding-

factor  

The fraction by which 

survival is increased by use of 

hiding activity 

Judgment If hiding cover for 

small trout is 

abundant: 0.7 

If good hiding 

cover is scarce: 

0.5 

trout-pisciv-

length  

The length (cm) above which 

a trout is assumed capable of 

eating other trout 

 15 

mort-fish-

pred-P1 

The density (fish/cm2) of 

piscivorous trout at which 

survival is increased by 0.1 

Judgment 5.0E-6 

mort-fish-

pred-P9 

The density of piscivorous 

trout at which survival is 

increased by 0.9 

 5.0E-7 
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Parameter 

name 

Definition Basis Standard value 

mort-fish-

pred-T1 

The reach temperature (°C) at 

which survival is increased by 

0.1 

Relation between 

maximum food 

consumption and 

temperature for trout 

6.0 

mort-fish-

pred-T9 

The temperature at which 

survival is increased by 0.9 

 2.0 

 

9.20 Growth 
The growth submodel updates a trout’s weight, length, and condition variables, and possibly its 

superindividual status, to reflect the growth obtained from the habitat cell and activity chosen on 

the current time step45. It uses the daily growth rate (g/d) calculated in the growth rate submodel 

(Sect. 9.21). The variable trout-growth is the grams of growth during the time step, calculated 

simply as the daily growth rate times step-length. 

In the first step of growth, weight is updated by adding trout-growth to trout-weight; if the result 

is negative then trout-weight is set to zero.  

Updating length and condition are more complex, even though inSTREAM highly simplifies the 

relation between a fish’s weight and its length. Abundant literature indicates that the allocation of 

energy intake between growth in body structure and energy reserves is an important adaptive 

behavior, but useful models of this complex behavior are not yet available (discussed further 

below). Instead, inSTREAM updates length using the simple assumption of Van Winkle et al. 

(1996) that growth is allocated only to weight if a fish’s weight is less than a “healthy” weight 

for its length, and otherwise is allocated to growth in both length and weight. 

The method for updating length adopted from Van Winkle et al. (1996) also uses their 

nonstandard definition of a condition factor. In fisheries science, a condition factor is an index of 

a fish’s weight relative to its length. A high condition factor indicates high weight relative to 

length, and therefore less vulnerability to starvation or disease during periods of negative growth. 

The condition factor variable used in inSTREAM (trout-condition) can be considered the 

fraction of “healthy” weight a fish is, given its length, and is never greater than 1.0.  

“Healthy” weight (trout-healthy-weight, g) is calculated from length (trout-length, the length 

before being updated) using a standard allometric relation: 

𝑡𝑟𝑜𝑢𝑡𝐻𝑒𝑎𝑙𝑡ℎ𝑦𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑡𝑟𝑜𝑢𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝐴 × 𝑡𝑟𝑜𝑢𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝑡𝑟𝑜𝑢𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝐵 

where trout-weight-A and trout-weight-B are trout parameters. These parameters can be 

estimated from field data, e.g., by identifying the individuals with relatively high weight per 

length (e.g., the individuals with greater than median values of weight divided by length cubed). 

Simulated growth is quite sensitive to the values of these parameters, so changing them affects 

model calibration and results. We provide example values in Table 11. 

 
45 The growth submodel is programmed in the procedure grow. 
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If the updated value of trout-weight is greater than trout-healthy-weight, then the trout grows in 

length. Trout-condition is set to 1.0 and length is set to the length of a healthy fish with the 

updated weight:  

𝑡𝑟𝑜𝑢𝑡𝐿𝑒𝑛𝑔𝑡ℎ = (
𝑡𝑟𝑜𝑢𝑡𝑊𝑒𝑖𝑔ℎ𝑡

𝑡𝑟𝑜𝑢𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝐴
)
(𝑡𝑟𝑜𝑢𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝐵−1)

 

If instead the updated value of trout-weight is less than or equal to trout-healthy-weight, then the 

trout does not grow in length. The value of trout-length is unchanged and trout-condition is set to 

trout-weight divided by trout-healthy-weight. 

This simple formulation succeeds in producing reasonably realistic patterns of trout growth 

under many conditions. However, it has several noteworthy limitations: 

Fish cannot preserve a high-energy-reserve condition. Fish will have a condition of 1.0 only on 

time steps with positive growth. Even if a fish has eaten well for many days in succession, its 

value of trout-condition can only be as high as 1.0. Further, any time step on which growth is 

negative (e.g., when the fish hide) causes condition to fall below 1.0. Trout in inSTREAM 7 can 

hide often (Sect. 9.13) and hence often have condition below 1.0. 

This weight-based condition factor is not the best predictor of starvation mortality (Sect. 9.17). 

This formulation locks in a length-weight relationship for growing fish. Therefore, inSTREAM 

will automatically reproduce the length-weight relationship defined by trout-weight-A and trout-

weight-B during periods of growth, but is not capable of reproducing other patterns (e.g., 

seasonal variation or variation among individuals or sites) in length-weight relations. 

The energetics of reproduction are not considered. While inSTREAM does simulate weight loss 

due to spawning (Sect. 9.28), it does not model storage of energy for gonad development and 

how gonad production affects length and weight and, therefore, behavior. 

Our experience with inSTREAM indicates that its simplified method for updating length is 

sufficient for the model’s purpose of predicting population responses and avoids a great amount 

of complexity. Investigating how to address the above limitations and how they affect 

inSTREAM’s results remains a research interest. 

The final step in the growth submodel determines whether the trout is a superindividual ready to 

be split into regular individuals. If the new value of trout-length is greater than the trout 

parameter trout-superind-max-length (cm), then it executes the submodel that splits it (Sect. 

9.39). 

Table 11: Parameters and values for growth 

Parameter 

name 

Definition Basis Value 

trout-energy-

density 

The ratio (J/g) between net 

energy intake and change in 

weight 

Literature summarized by 

Hanson et al. (1997) 

5900 

trout-weight-A 

trout-weight-B 

The multiplier and exponent in 

the allometric relation for 

weight of a “healthy” trout 

Cutthroat Trout, Little Jones 

Creek, Del Norte County, 

0.0124 

 

2.98 
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California (Railsback and Harvey 

2001) 

trout-weight-A 

trout-weight-B 

 Rainbow Trout, Tule River, 

Tulare County, California (Van 

Winkle et al. 1996) 

0.0134 

 

2.96 

trout-weight-A 

trout-weight-B 

 Brown Trout, Tule River, Tulare 

County, California (Van Winkle 

et al. 1996) 

0.0123 

 

2.97 

trout-weight-A 

trout-weight-B 

 Rainbow Trout, Green River 

below Flaming Gorge Reservoir, 

Utah (Railsback et al. 2006) 

0.0185 

 

2.90 

trout-weight-A 

trout-weight-B 

 Brown Trout,  Green River below 

Flaming Gorge Reservoir, Utah 

(Railsback et al. 2006) 

0.0157 

 

2.91 

 

9.21 Growth rate 
The growth rate submodel calculates the growth rate (rate of change in body weight, g/d, which 

can be negative) that a trout would experience in a particular cell, using a particular activity, on a 

specific time step46. Growth is modeled as proportional to net energy intake rate (NEI), the 

difference between the energy intake from feeding and metabolic costs. The submodel works in 

three steps. 

The first step calculates gross energy intake (J) from feeding, which depends on the trout’s 

activity. The hiding activity provides zero gross energy intake. The drift and search feeding 

activities have their own submodels to calculate gross intake (sects. 9.22 and 9.23). Food intake 

rate (g/d) from those submodels is converted to gross energy intake rate (J/d) by multiplying 

food intake rate by the reach parameter reach-prey-energy-density, which represents the energy 

content of fish prey (J/g).  

The second step calculates the respiration cost rate, using the respiration cost submodel (Sect. 

9.25). Respiration rate depends in part on swimming speed, which depends on activity as 

explained in Sect. 9.13.  

The third step calculates NEI and converts it to growth rate. NEI is equal to the gross energy 

intake rate calculated in the first step, minus the respiration costs determined in the second step. 

This difference (J/d) is converted to growth rate by dividing it by the trout parameter trout-

energy-density (J/g). This parameter therefore represents the growth (g) a trout gets from a unit 

of net energy intake (J). The literature offers direct measurements of fish energy density (e.g., 

Rottiers and Tucker 1982; Johnson et al. 2017). The energy content of salmonids can vary among 

individuals (typically increasing with age) and over time (e.g., seasonally; Sloat and Reeves 

2014). While such variation may have adaptive consequences, inSTREAM currently neglects it 

except for allowing different values of trout-energy-density for different species or study sites. 

 
46 The growth rate submodel is programmed in procedure growth-rate-for. 



 

101 

 

 

Table 12: Parameters and values for growth rate 

Parameter name Definition Basis Standard 

value 

reach-prey-

energy-density 

The energy content of fish prey 

(both search and drift; J/g) 

Literature summarized by 

Hanson et al. (1997) 

2500 

trout-energy-

density 

The ratio (J/g) between net 

energy intake and change in 

weight 

Literature summarized by 

Hanson et al. (1997) 

5900 

 

9.22 Drift feeding 
The drift feeding submodel calculates the food intake rate (g/d) in a particular cell for a trout 

using the drift feeding strategy47. Drift (or “sit-and-wait”) feeding is widely assumed the 

dominant feeding strategy of stream salmonids. The submodel assumes that drift intake rate is 

limited by the rate at which the trout can capture drift prey, the physiological maximum food 

intake rate, or the drift prey available in the cell. At its highest level, the submodel is: 

𝐼𝐷 = 𝑚𝑖𝑛(𝐶𝐷 , 𝐶𝑠𝑡𝑒𝑝𝑚𝑎𝑥, 𝑐𝑒𝑙𝑙𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐷𝑟𝑖𝑓𝑡) 

where ID is the daily rate of drift food intake (g/d), CD is the modeled rate of drift food capture, 

Cstepmax is the maximum consumption rate for the time step (Sect. 9.24), and cell-available-drift 

is the drift food availability rate in the cell at the current time, considering the food production 

rate and depletion by larger fish (Sect. 9.11.2). (If the trout is a superindividual, the value of cell-

available-drift is divided by the trout’s value of trout-superind-rep so it represents drift 

availability per fish.) The rest of this section describes the drift capture rate submodel. 

The drift feeding submodel of inSTREAM 7 is unique but builds on an extensive base of data 

and theory going at least as far back as Fausch (1984). This literature has established a common 

paradigm of drift intake depending on three processes: the rate at which flow carries prey past a 

stationary trout; the ability of trout to detect the prey, which is typically modeled as a “reaction 

distance”; and the ability of trout to capture prey once detected.  

The ability of trout to detect and capture prey is widely understood to depend on several factors, 

many of which interact: 

Trout size: larger fish have larger eyes and therefore better detection ability, and better ability to 

capture prey and return to the feeding station. 

Water velocity: higher velocities make it more difficult to capture prey and return to the feeding 

station. 

 
47 Drift food intake is programmed in the procedure drift-intake-for. 
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Turbidity: while low levels of turbidity can theoretically make small prey easier to see (by 

increasing contrast between prey and background; Utne-Palm 2002), higher levels above a 

threshold sharply reduce detection ability. 

Prey size: larger prey are easier to detect. 

Light intensity: while trout are able to feed at very low light levels, their detection ability 

increases rapidly as light levels approach daytime values. 

InSTREAM 7 represents all these factors except prey size. Prey size is neglected to avoid the 

complexity of representing it; instead, the model treats all prey as having a single, unspecified, 

size. 

While an extensive literature addresses the effects of light and turbidity on the ability of fish to 

detect prey (e.g., Hansen and Beauchamp 2015 and the review of Utne-Palm 2002), little of it is 

directly applicable to the light function. Reasons for caution in using literature models include 

empirical studies that used prey more visible than the aquatic macroinvertebrates assumed in 

inSTREAM (e.g., food items floating on the surface, or fish as prey) and limitations on reaction 

distance imposed by the experimental apparatus. While some studies separately measured the 

effects of surface light and turbidity (e.g., Hansen et al. 2013), we found only one study (Vinyard 

and O’Brien 1976) that varied both in combination.  

Another limitation is that much of the experimental literature measures light as illuminance in 

units of lux; illuminance is a measure of light visible to the human eye and is not directly 

convertible to the irradiance measure used in inSTREAM. To make use of such literature, we 

characterize a range of light conditions using both illuminance and irradiance (Table 13). The 

illuminance values are from the Wikipedia article on lux (https://en.wikipedia.org/wiki/Lux, 

accessed 3 May 2019), and the irradiance values are from our light submodel (Sect. 9.9). 

Table 13: Illuminance and irradiance values typifying a range of light conditions. 

Condition Typical illuminance values 

(lux) 

Typical irradiance values 

(W/m2) 

Night without bright 

moon 

0.002 0.9 

Sunrise or sunset 400 20-25 

Full daylight 10-25,000 200-600 

 

Despite the above limitations, the literature clearly identifies several patterns useful for modeling 

the effects of turbidity and light:  

Reaction distance is unaffected by light intensity above a threshold value. Hansen et al. (2013) 

found reaction distance of Cutthroat Trout and Chinook Salmon preying on small fish to stop 

increasing with illuminance at a threshold of ~20 lux. Vinyard and O’Brien (1976) found the 

reaction distance of juvenile bluegill hunting daphnia to stop increasing at a threshold of about 

10 lux.  

Low levels of turbidity appear not to significantly reduce reaction distance; Hansen et al. (2013) 

found a threshold of 2 NTU for turbidity effects with fish prey, while previous versions of 
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inSTREAM used a threshold of 5 NTU that was based on the results of Sweka and Hartman 

(2001).  

As light intensity decreases below the threshold at which it has no effect, reaction distance 

decreases sharply but then again plateaus at a lower threshold. Hansen et al. (2013) found 

reaction distance to decrease sharply by half as illuminance decreased from ~20 to 5 lux, but to 

decrease little as illuminance further decreased.  

The effect of increasing turbidity also is strong just above the no-effect threshold but declines as 

turbidity increases. The results of Hansen et al. (2013) and Sweka and Hartman (2001; Figure 

28) show a steep decline in reaction distance at turbidity levels above the no-effect threshold but 

reaction distance then appears to reach a lower threshold at high turbidity levels, perhaps because 

fish use senses other than vision to find prey.  

Turbidity has strong effects on reaction distance at values (5-20 NTU) that do not reduce daytime 

light intensity to levels that would by themselves affect reaction distance. For example, with the 

standard parameter values of Sect. 9.10 a cell 50 cm deep, with sunlight-irradiance = 200 and 

turbidity = 20 NTU, has a cell-light value of 68 W/m2, well above the twilight levels where 

reaction distance starts to decline because of light intensity.  

These patterns lead us to conclude, as did Vinyard and O’Brien (1976), that irradiance and 

turbidity must be treated as having separate and independent effects on reaction distance even 

though irradiance is in part a function of turbidity. 

The conceptual model of drift feeding is that a trout remains stationary (except when capturing 

prey) and detects the prey carried by the flow through a “capture area” perpendicular to the flow, 

and successfully captures some fraction of the detected prey. This capture area depends on the 

reaction distance and, sometimes, water depth. We treat the capture area as a rectangle with 

width of two times the reaction distance (the fish can detect prey up to the reaction distance in 

either direction); its height is the lower of reaction distance and depth. The drift intake model is: 

𝐶𝐷 = (2 × 𝐷𝑟 ×𝑚𝑖𝑛(𝐷𝑟 , 𝑐𝑒𝑙𝑙𝐷𝑒𝑝𝑡ℎ)) × 𝑑𝑟𝑖𝑓𝑡𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑐𝑒𝑙𝑙𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 × 86400

× 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑆𝑢𝑐𝑐𝑒𝑠𝑠 

where CD is the intake (capture) rate of drift prey (g/d), Dr is the reaction distance (cm), reach-

drift-conc is a reach parameter representing the prey concentration (g/cm3; Sect. 9.11.2), 86400 

converts units from per second to per day, and capture-success is the fraction of detected prey 

successfully captured. 

The parameters of the drift feeding submodel have strong effects on the range of velocities over 

which simulated trout can obtain positive growth and, therefore, on the relations predicted by 

inSTREAM between flow and trout populations (Sect. 26.2). We recommend careful 

consideration and testing before any modification of parameter values. Further, the maximum 

sustainable swimming speed submodel (Sect. 9.26) strongly affects drift feeding, so any changes 

to that submodel should carefully consider effects on drift feeding. 

9.22.1 Reaction distance 

The reaction distance Dr is modeled as: 

𝐷𝑟 = 𝑡𝑟𝑜𝑢𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝑇𝑒𝑟𝑚 × 𝑡𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 × 𝑙𝑖𝑔ℎ𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 
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The trout length term calculates reaction distance when unaffected by turbidity and light. It is 

based on empirical studies by Schmidt and O’Brien (1982; see also O’Brien et al. 2004) who 

measured how detection distance in a stream salmonid (Arctic Grayling) varied with fish and 

prey size. These experiments used zooplankton as prey whereas we assume trout represented by 

inSTREAM are more often consuming larger invertebrates, but the zooplankton were large and 

the results have been used successfully as the basis of drift feeding models by Hughes (1992) and 

Hughes et al. (2003). Schmidt and O’Brien (1982) measured detection distance of fish with 

lengths from 3 to 13 cm, during daylight and night conditions, and for a variety of zooplankton 

prey sizes. Only daylight observations for 0.2 cm prey (the largest) are used here.  

These observations can be represented with a linear model having a slope of 2.0 and intercept of 

4.0 cm (Figure 27). This linear model is not a regression fit to the data of Schmidt and O’Brien 

(1982), and in fact a logarithmic equation fits the data more closely. The linear model shown in 

Figure 27 was chosen for several reasons. First, it captures the fact that very small trout cannot 

use as wide a range of prey sizes as larger trout can, a process not otherwise represented in the 

feeding model. Second, a logarithmic fit to these data predicts negative detection distances for 

trout lengths less than 2 cm and does not reproduce the observations of Hughes et al. (2003) that 

detection distance continues to increase to over 100 cm for very large trout. Finally, pre-

calibration of the growth model was used to select the intercept and slope of the linear model 

(parameters trout-react-dist-A-A and trout-react-dist-B, defined below). The pre-calibration 

analysis indicated that the growth rates of very small trout are very sensitive to the intercept. An 

intercept of 4.0 was found to provide realistic growth of very small trout at drift food availability 

values that also produce realistic growth in larger trout.  

 

Figure 27: Reaction distance as a function of trout length: observations of Schmidt and O’Brien 

(1982) and the model with parameters in Table 14. 

 

The trout length function therefore is: 

𝑡𝑟𝑜𝑢𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑡𝑟𝑜𝑢𝑡𝑅𝑒𝑎𝑐𝑡𝐷𝑖𝑠𝑡𝐴 + 𝑡𝑟𝑜𝑢𝑡𝑅𝑒𝑎𝑐𝑡𝐷𝑖𝑠𝑡𝐵 × 𝑡𝑟𝑜𝑢𝑡𝐿𝑒𝑛𝑔𝑡ℎ 

where trout-react-dist-A and trout-react-dist-B are trout parameters with values in Table 14. 
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The turbidity function is based on several empirical studies. The primary effect of turbidity on 

drift feeding appears to be reducing the ability of fish to detect prey: Sweka and Hartman (2001) 

observed that as turbidity increased the frequency of prey detection by trout decreased but the 

frequency of attacking and capturing detected prey did not. Sweka and Hartman (2001) 

conducted a laboratory experiment that appears to be a fairly clear test of the effects of turbidity 

on the ability of fish to detect prey, over a range of 3-40 NTUs. They developed a curve for how 

detection distance decreases with turbidity, for 14 cm brook trout feeding on large (1.0 cm) 

floating prey. The function used by inSTREAM for relative detection distance (the fractional 

reduction in detection distance due to turbidity; Figure 28) is based on the data of Sweka and 

Hartman (2001) but differs from their curve in two ways. 

First, inSTREAM assumes that turbidity has no effect at values below a threshold of 5 NTUs 

(defined by the parameter trout-turbid-threshold, NTU). The curve of Sweka and Hartman 

(2001) has a steep gradient at low turbidity levels, which would make feeding success very 

sensitive to low turbidity values. However, none of the literature cited above shows a clear 

negative effect of turbidity at levels below 5 NTUs. Another reason for assuming a turbidity 

threshold is to avoid making inSTREAM highly sensitive to low turbidity levels, which are hard 

to measure or estimate accurately. 

The second change is the addition of a minimum detection distance. The data of Sweka and 

Hartman (2001) indicate that detection distance does not go completely to zero as turbidity 

reaches levels well above 50 NTUs (Figure 28). Our own laboratory studies (Harvey and White 

2008) indicate that trout continue to capture some drift, especially near the stream bed, at 

turbidity levels exceeding 150 NTUs. Therefore, inSTREAM includes a parameter trout-turbid-

min (unitless) which limits the effect of turbidity on detection distance. (This formulation 

neglects the cessation of feeding at extremely high turbidity values—400 NTU—observed by 

Harvey and White 2008.) 

The turbidity function in the equation for reaction distance assumes that if turbidity <= trout-

turbid-threshold then turbidity-function is 1.0; otherwise: 

𝑡𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
= 𝑡𝑟𝑜𝑢𝑡𝑇𝑢𝑟𝑏𝑖𝑑𝑀𝑖𝑛
+ (1.0 − 𝑡𝑟𝑜𝑢𝑡𝑇𝑢𝑟𝑏𝑖𝑑𝑀𝑖𝑛)

× exp(𝑡𝑟𝑜𝑢𝑡𝑇𝑢𝑟𝑏𝑖𝑑𝐸𝑥𝑝 × (𝑡𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 − 𝑡𝑟𝑜𝑢𝑡𝑇𝑢𝑟𝑏𝑖𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)) . 
 

The trout parameter trout-turbid-exp has a standard value of -0.0116 fit to the data of Sweka and 

Hartman (2001; Figure 28). This equation causes the function to asymptotically approach trout-

turbid-min as turbidity increases. 
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Figure 28: Response of reaction distance (as a fraction of the zero-turbidity values) to turbidity. 

The symbols are observations by Sweka and Hartman (2001) and the curve is the turbidity 

function. 

 

The light function is similar to the turbidity function except that reaction distance increases as 

irradiance increases. The patterns listed above suggest a function in which reaction distance (1) is 

not affected by light intensity above an upper threshold that corresponds to twilight conditions, 

(2) decreases rapidly as light decreases below the upper threshold, but (3) reaches a plateau as 

light decreases to night levels. The study by Vinyard and O’Brien (1976) of bluegill reacting to 

Daphnia prey found a steep decrease in reaction distance as illuminance decreased from 10 to 

0.7 lux, corresponding to twilight conditions. The study by Hansen et al. (2013) of Cutthroat 

Trout and Chinook Salmon juveniles responding to trout prey found a similar steep decrease in 

reaction distance as illuminance decreased from ~40 to 8 lux, but little further decrease at 

illuminance down to 0.01 lux. The light function therefore uses the same approach as the 

turbidity function. If cell-light >= trout-light-threshold then light-function is 1.0; otherwise this 

equation is used: 

𝐹𝐿 = 𝑡𝑟𝑜𝑢𝑡𝐿𝑖𝑔ℎ𝑡𝑀𝑖𝑛
+ (1.0 − 𝑡𝑟𝑜𝑢𝑡𝐿𝑖𝑔ℎ𝑡𝑀𝑖𝑛)

× 𝑒𝑥𝑝(𝑡𝑟𝑜𝑢𝑡𝐿𝑖𝑔ℎ𝑡𝐸𝑥𝑝 × (𝑡𝑟𝑜𝑢𝑡𝐿𝑖𝑔ℎ𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝑐𝑒𝑙𝑙𝐿𝑖𝑔ℎ𝑡)) 

where FL is the light function in the equation for reaction distance, and trout-light-min and trout-

turbid-exp are trout parameters defining the minimum function value and the rate of decrease. 

The parameter values in Table 14 reproduce the patterns identified in this paragraph: they cause 

the light function to approach 0.5 as light decreases toward zero. 

Figure 29 illustrates the combined effects of light and turbidity on reaction distance. 
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Figure 29: Combined effects of irradiance and turbidity on reaction distance for drift feeding. 

Contours indicate turbidity-function ×light-function in cells with depth of 20 cm (left) and 100 

cm (right), using standard cell light parameter values. The light function is driven by cell-light, 

which depends on depth and turbidity as well as surface irradiance. 

9.22.2 Capture success 

While the capture area represents the area over which drift-feeding trout can detect prey, capture 

success represents the fraction of detected prey actually caught. Capture success is assumed to be 

a function mainly of water velocity. Fish must be able to intercept the prey, capture it, and return 

to their feeding station. Higher velocities make maneuvering quickly enough to capture prey 

more difficult, and swimming longer distances to intercept prey requires more energy (Hughes et 

al. 2003). Capture success is also affected by low temperatures, which reduce the ability to 

maneuver and swim rapidly.  

Capture success by drift-feeding salmonids has been evaluated in several studies, most 

conducted in laboratory chambers. Previous versions of inSTREAM based their capture success 

submodel mainly on the study by Hill and Grossman (1993), who measured capture success for 

Rainbow Trout feeding on 0.2-cm prey. The trout had lengths of 6 and 10 cm, and measurements 

were made at 5 and 15ºC with water velocities ranging from 0 to 40 cm/s. Capture success was 

evaluated as the fraction of prey caught, within the fish’s reaction distance. Hill and Grossman 

(1993) approximated the reaction distance as 2.5 times the fish’s standard length, which is fairly 

close to the reaction distance used in inSTREAM (Figure 30). Hill and Grossman measured 

capture success within each of three ranges: the inner 20% of the reaction distance, 20-60% of 

reaction distance, and 60-100% of reaction distance. We evaluate their capture success by 

averaging these values over the entire reaction distance.  

Subsequently, Nislow et al. (1999) evaluated capture success of newly emerged Atlantic Salmon 

fry via field observations. Additional laboratory observations were made Piccolo et al. (2008; 

juvenile Coho Salmon and Steelhead), Donofrio et al. (2018; juvenile Chinook Salmon), 

Bozeman and Grossman (2019; adult Arctic Grayling), and Johansen et al. (2020; adult Rainbow 

Trout). The only of these studies that directly compared two species (Piccolo et al. 2008) found 

no substantial difference between Coho Salmon and Steelhead in the relation between capture 
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success and velocity. We chose not to consider the results of Nislow et al. (1999) because they 

studied newly-emerged fry which appear to have limited swimming ability, and those of 

Johansen et al. (2020) because they used an especially artificial laboratory setup and (apparently) 

unexercised hatchery fish. 

We examined the capture success results of these studies, scaling velocity by maximum 

sustainable swimming speed of the fish (Figure 30). Maximum sustainable swim speed (a 

function of fish length and water temperature; Sect. 9.26.) is useful for modeling capture success 

because it includes the effects of both fish length and temperature on swimming ability, and we 

assume swimming ability is the main factor driving capture success. There is some variation 

among the study results, likely due in part to variation in experimental methods such as 

laboratory chamber size and configuration, prey size, light conditions, and fish swimming 

condition. Even so, it is clear that capture success is high and almost unaffected by velocities up 

to about 50% of maximum sustainable swimming speed, then decreases rapidly with velocity, yet 

remains well above zero at maximum swimming speed. 

Capture success is therefore modeled as a decreasing logistic function of the ratio of cell velocity 

(not the trout’s swimming speed, which is often reduced by use of velocity shelter; Sect. 9.13) to 

maximum sustainable swimming speed. The parameters for the logistic function illustrated in 

Figure 30 (trout-capture-R1 and trout-capture-R9) have values given in Table 14.  

 

 

Figure 30: Capture success model and the observations it was based on. H&G: Hill and 

Grossman (1993), B&G: Bozeman and Grossman (2019), Donofrio: Donofrio et al. (2018), P-

Coho: Piccolo et al. (2008) results for Coho Salmon, and P-SH: Piccolo et al. results for 

Steelhead. 
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Table 14: Parameters and values for the drift feeding submodel. 

Parameter Meaning and units Standard value 

trout-react-dist-A Constant in the linear equation for 

reaction distance as a function of 

trout length (cm) 

4.0 

trout-react-dist-B Multiplier in the equation for 

reaction distance as a function of 

trout length (unitless) 

2.0 

trout-turbid-threshold Value (NTU) below which 

turbidity has no effect on reaction 

distance  

5.0 

trout-turbid-min Minimum value of the turbidity 

function for reaction distance 

(unitless) 

0.1 

trout-turbid-exp Exponential decrease rate for 

effect of turbidity on reaction 

distance (NTU-1) 

-0.116 

trout-light-threshold Value (W/m2) above which 

irradiance has no effect on reaction 

distance  

20 

trout-light-min Minimum value of the light 

function for reaction distance 

(unitless) 

0.5 

trout-light-exp Exponential decrease rate for 

effect of irradiance on reaction 

distance (m2/W) 

-0.2 

trout-capture-R1 Ratio of cell-velocity / trout 

maximum sustainable swim speed 

at which capture success is 0.1 

(unitless) 

1.3 

trout-capture-R9 Ratio of cell-velocity / maximum 

sustainable swim speed at which 

capture success is 0.9 (unitless) 

0.4 

 

The drift intake and growth submodels together produce complex responses of growth to many 

habitat and trout variables. Figure 31 illustrates some of these responses48. 

 
48 Figure 31 was produced with output of the procedure write-growth-report, which is in the separate file of 

inSTREAM test code. This procedure reports growth rates for all combinations of selected values for many 

habitat and trout variables that affect growth. 
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Figure 31. Exploration of drift feeding growth rates. Each panel shows how the relation between 

cell velocity (X) and trout growth rate (Y) depends on one other variable. Growth was calculated 

using the parameter values in Table 12 and Table 14, and a value of 3.0E-10 g/cm3 for reach-

drift-conc. Except as indicated in each panel’s legend, simulations used these values: trout-

length, 15 cm; temperature, 15°C; cell-light, 100 W/m2 (daytime); turbidity, 0.0 NTU; cell-

depth, 100 cm; and reach-shelter-speed-frac,1.0 (no velocity shelter). 
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9.23 Search feeding 
Actively searching for benthic or drop-in food (Nakano et al. 1999) is an alternative to the drift-

feeding strategy49. Our empirical research has shown that search feeding can be important when 

drift intake is low due to habitat conditions. Both model results (Harvey and Railsback 2009) and 

laboratory studies (Harvey and White 2008) indicate that search feeding is especially important 

when high turbidity makes drift feeding unprofitable. In simulating a field experiment with trout 

confined to stream reaches where flow was artificially reduced, Harvey and Railsback (2014) 

found that inSTREAM better matched observed growth when search feeding was included, 

presumably because there can be little drift food at very low velocities. Similarly, an application 

of inSTREAM in Iran was based on the assumption that trout in the Elarm River are especially 

dependent on search feeding because this river’s low depth reduces drift intake (Hajiesmaeili 

2019). 

Like drift intake, search intake is assumed to be potentially limited by the search feeding intake 

rate, the physiological maximum intake rate, or the availability of search food. The overall 

submodel is: 

𝐼𝑆 = 𝑚𝑖𝑛(𝐶𝑆, 𝐶𝑠𝑡𝑒𝑝𝑚𝑎𝑥, 𝑐𝑒𝑙𝑙𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑆𝑒𝑎𝑟𝑐ℎ) 

where IS is the daily rate of search food intake (g/d), CS  is the modeled rate of search food 

capture (g/d), Cstepmax is the maximum consumption rate for the time step (Sect. 9.24), and cell-

available-search is the rate (g/d) at which search food is available in the cell at the current time, 

which depends on the food production rate and depletion by larger fish (Sect. 9.11). (If the trout 

is a superindividual, the value of cell-available-search is divided by its value of trout-superind-

rep so it represents availability per fish.) The remainder of this section describes the model of 

search capture rate CS. 

In contrast to drift feeding, no established models address search feeding by trout. The process is 

presumably complex due to, e.g., the influence of substrate type and prey taxa on prey 

availability. Given the uncertainties and complexities, inSTREAM takes a simple approach. We 

assume that the rate of search food intake is proportional to the rate at which search food 

becomes available: every trout searches for food at about the same rate, so intake increases 

linearly with food production. Search feeding intake is also assumed to decrease linearly to zero 

as water velocity increases to the trout’s maximum sustainable swim speed. This velocity term 

represents how the ability of a fish to see and search for food decreases with velocity. (It does not 

represent the energetic cost of swimming at high velocities, which is considered in the respiration 

submodel; Sect. 9.25.)  

We assume no negative effects of low light intensity or high turbidity on search feeding intake 

rate. This assumption was made in part to keep the submodel simple in the absence of literature 

on such effects. But it also seems reasonable to assume that search-feeding fish are typically 

closer to the bottom than their reaction distance (as modeled in Sect. 9.22.1), making feeding less 

sensitive to reaction distance. This assumption makes search feeding more beneficial relative to 

drift feeding at night, which corresponds with our anecdotal field observations that (in a clear 

stream) trout feeding at night appear usually to be bottom-oriented instead of drift-oriented. 

The model of search food intake is: 

 
49 Search feeding intake is coded in the procedure search-intake-for. 
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𝐶𝑆 = 𝑟𝑒𝑎𝑐ℎ𝑆𝑒𝑎𝑟𝑐ℎ𝑃𝑟𝑜𝑑 × 𝑡𝑟𝑜𝑢𝑡𝑆𝑒𝑎𝑟𝑐ℎ𝐴𝑟𝑒𝑎 ×𝑚𝑎𝑥 (
𝑡𝑟𝑜𝑢𝑡𝑀𝑎𝑥𝑆𝑝𝑒𝑒𝑑 − 𝑐𝑒𝑙𝑙𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑡𝑟𝑜𝑢𝑡𝑀𝑎𝑥𝑆𝑝𝑒𝑒𝑑
, 0). 

In this equation, reach-search-prod is a reach parameter representing the rate of search food 

production (g/d/cm2; Sect. 9.11.2). The trout parameter trout-search-area (cm2) can be 

interpreted as the area over which the search food production is consumed by one trout. Trout-

max-speed is the trout’s maximum sustainable swimming speed (Sect. 9.26). Typical values of 

reach-search-prod and trout-search-area are 1.0E-5 and 20,000, but reach-search-prod is often 

addressed in calibration (Sect 24). 

9.24 Maximum food intake 
The maximum food intake submodel determines the maximum rate (g/d; typically referred to as 

Cmax in the fish bioenergetics literature) at which trout can consume food via either the search or 

drift feeding strategies50. Unlike many other applications of standard fish bioenergetics models 

(Hanson et al. 1997), Cmax normally has no effect on food intake in inSTREAM; it is used only to 

limit intake under conditions—most commonly, extremely cold temperatures (e.g., Cunjak et al. 

1998) but also when food availability is extremely high for small trout—when  food processing 

and energy assimilation become limited by digestion rate instead of food intake rate. 

Unfortunately, Cmax is poorly defined and difficult to measure, largely because it varies with 

factors such as the fish’s exercise condition, food type, and feeding conditions in the laboratory 

(PG&E 1994, Myrick 1998).  

Maximum food consumption rate is also time-scale dependent: fish (like other animals) can 

consume food at much higher rates over short periods than they could maintain over longer 

periods. Even though inSTREAM 7 uses time steps less than 1 day, we treat Cmax as maximum 

consumption rate at a one-day time scale because conditions causing it to limit food intake are 

likely to persist for more than one time step. Another important reason to treat Cmax  as a daily 

rate is that the literature in which Cmax has been measured at an explicit time scale has used 1.0 

day (e.g., Mesa et al. 2012, Kepler et al. 2014). We do this by limiting food intake each time step 

so that the total intake over the 1.0-d period that ends at the end of the time step is less than the 

value of Cmax for the current time step. Scaling Cmax to a full day has potentially important 

implications because it could increase the ability of trout to maintain condition while hiding as 

much as possible: hiding during part of a day increases the maximum rate at which trout can feed 

during remaining phases of the same day, while eating at a high rate could sometimes cause Cmax 

to limit consumption later in the day and hence make hiding more likely to be the best activity. 

This approach also greatly increases the rate at which simulated trout can consume food during 

time steps when feeding is especially profitable. 

Cmax is scaled to 1.0 d in several steps. First, the food consumption (g) in each time step is 

recorded as one of the trout’s memory variables described in Sect. 9.12. Then the maximum rate 

at which a fish can consume food at the current time step (Cstepmax, g/d) is calculated as the daily 

maximum consumption rate Cmax minus the consumption so far in the previous time steps of the 

1.0-d period that ends at the end of the current time step, divided by step-length. Negative 

 
50 The maximum food intake submodel is coded in the procedure c-stepmax-for. However, to increase execution 

speed, the allometric weight term for Cmax is coded in the procedure update-trout and the temperature term is 

updated in update-habitat. 
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Cstepmax values (which result from declining temperatures making Cmax less than on previous time 

steps) are set to 0.0. 

Published equations for Cmax (Hanson et al. 1997) include (a) an allometric function relating Cmax 

to fish size, and (b) a temperature function. The equation used in inSTREAM is: 

𝐶𝑚𝑎𝑥 = 𝑡𝑟𝑜𝑢𝑡𝐶𝑚𝑎𝑥𝐴 × 𝑡𝑟𝑜𝑢𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑡𝑟𝑜𝑢𝑡𝐶𝑚𝑎𝑥𝐵 × 𝐶𝑚𝑎𝑥𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

where trout-cmax-A and trout-cmax-B are trout parameters. (Previous versions of inSTREAM 

defined trout-cmax-B as the value used here minus 1.0.) This equation is widely used with the 

allometric parameter values developed by Rand et al. (1993) for Rainbow Trout (Table 15) to 

model Cmax of salmonids in general (e.g., Van Winkle et al. 1996, Railsback and Rose 1999, 

Booker et al. 2004). 

The temperature function in the equation for Cmax  is based in part on laboratory studies on 

Rainbow Trout by Myrick (1998) and Myrick and Cech (2000). These studies focused on higher 

temperatures, measuring Cmax  at 10, 14, 19, 22, and 25º. Previous models of Cmax  for salmonids 

(Rand et al. 1993) used temperature functions based on the laboratory studies of From and 

Rasmussen (1984), who studied Rainbow Trout at temperatures of 5-22º, and of Elliott (1982), 

who studied Brown Trout.  

Instead of an equation, the Cmax  temperature function for inSTREAM uses a set of points 

defining a piecewise-linear function. The value of cmax-temp-function for the temperature of the 

trout’s reach is interpolated linearly from this function (Figure 32) ; any number of points can be 

used in this function. The interpolation method produces values falling on the line segments 

defined by the parameter points. (Temperatures below the lowest temperature of the points that 

define cmax-temp-function cause an error; temperatures above the highest point on the function 

receive a Cmax value equal to that of the highest point.) 

While several sets of equations and parameters for Cmax and its temperature function have been 

published for different salmonid species, scrutiny of these publications indicates that differences 

among models of Cmax are as likely the result of differences in experimental methods as inherent 

differences among species or stocks. Considering the inherent uncertainty in Cmax and its limited 

effect on results of inSTREAM, we cautiously recommend values of 0.628 for trout-cmax-A and 

0.7 for trout-cmax-B, and the cmax-temp-function values in Table 15 for stream trout in general. 

However, more recent measurements by Mesa et al. (2012; bull trout eating fish prey) and Kepler 

et al. (2014; lake trout eating invertebrate larvae) are incompatible with the temperature function 

of Figure 32; they both found consumption rate to peak at temperatures below 20º. Users are 

advised to consider such literature when selecting parameter values for cold-adapted species. 
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Figure 32: Temperature function for maximum food intake, with parameter values from Table 15. 

 

Table 15: Example temperature function for maximum food intake, cmax-temp-function. 

Temperature (°C) Function value (unitless) 

0.0 0.05 

2.0 0.05 

10 0.5 

22 1.0 

23 0.8 

25 0.5 

30 0.0 

 

9.25 Respiration costs 
This submodel calculates the rate at which trout lose energy, to be balanced against the energy 

intake rate in calculating growth51. All energy losses except those due to growth are categorized 

as “respiration” and (as an approximation) assumed to be represented by the standard technique 

of measuring respiration rate as oxygen consumption. The respiration formulation of inSTREAM 

is based on the “Wisconsin” bioenergetics formulation (Hanson et al. 1997; Deslauriers et al. 

2017), which is very simple yet useful for approximating growth in fish population models. Parts 

of the respiration formulation of inSTREAM 7 differ from previous versions of inSTREAM and 

from the Wisconsin formulation, and parameter definitions and values have changed. 

 
51 Respiration is coded in the procedure respiration-for. However, the weight term is updated once per time 

step in procedure update-trout and the temperature term is updated once per time step in update-habitat. 
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InSTREAM neglects the egestion and excretion components of the Wisconsin model because 

they are relatively small and especially uncertain. 

Respiration is treated as a function of body mass, water temperature, and swimming activity. The 

general formulation from Hanson et al. (1997) is: 

𝑡𝑟𝑜𝑢𝑡𝑅𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛
= 𝑟𝑒𝑠𝑝𝑀𝑎𝑠𝑠𝑇𝑒𝑟𝑚 × 𝑟𝑒𝑠𝑝𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 × 𝑟𝑒𝑠𝑝𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

where trout-respiration is the respiration (energy loss) rate (J/d), resp-mass-term relates “resting” 

metabolism (J/d; at 0° with no activity) to body mass, resp-temperature-function is a unitless 

function that represents how respiration increases with temperature, and resp-activity-function 

(unitless) represents how respiration increases with swimming speed. (A trout’s swimming speed 

is determined in the habitat and activity selection submodel; Sect. 9.13.) 

Resting metabolism is calculated as an allometric function: 

𝑟𝑒𝑠𝑝𝑀𝑎𝑠𝑠𝑇𝑒𝑟𝑚 = 𝑡𝑟𝑜𝑢𝑡𝑅𝑒𝑠𝑝𝐴 × 𝑡𝑟𝑜𝑢𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑡𝑟𝑜𝑢𝑡𝑅𝑒𝑠𝑝𝐵 

where trout-resp-A (J/d/g) and trout-resp-B (unitless) are trout parameters with values taken 

from the bioenergetics literature. The parameters that Rand et al. (1993; summarized in Appendix 

A of Hanson et al. 1997) developed for Steelhead Trout are widely used for stream trout in 

general. For the multiplier, Rand et al. used a value of 0.00264 g oxygen per g fish per day, and 

an exponent of -0.217. Converting the units with an oxycalorific constant of 13,560 J/g O2 

(Deslauriers et al. 2017) and converting from a mass-specific form (J/d/g) to the absolute form 

(J/d) results in values of 36 J/d/g for trout-resp-A and 0.783 for trout-resp-B. 

The temperature function of inSTREAM 7 is revised in accordance with recent, more 

comprehensive data. The temperature function of the Wisconsin model and previous versions of 

inSTREAM used an exponential function: 

𝑟𝑒𝑠𝑝𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑒𝑥𝑝(𝑡𝑟𝑜𝑢𝑡𝑅𝑒𝑠𝑝𝐶 × 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒). 

This function was used by Rand et al. (1993) with a value of 0.0682 ºC-1 for the parameter trout-

resp-C; it produced a doubling (98% increase) in respiration between 10 and 20° and an increase 

of 40% between 20 and 25°. Rand et al. (1993) based this parameter value on observations of 

only two temperatures by Rao (1968).  

Several more comprehensive data sets have been generated using field respirometry on wild fish. 

Verhille et al. (2016) measured resting metabolic rate (RMR), as an oxygen consumption rate, for 

two trout at each of 13 temperatures between 14 and 25ºC. They used a field swim chamber and 

respirometer and observed wild Rainbow Trout of ~13 cm length. (They concluded that their 

study population, from the lower Tuolumne River of California’s Central Valley, may be 

physiologically adapted to high temperatures.) Their observations did not exhibit high variability 

among individual fish. They fit a quadratic equation to their data; the equation fits their data 

closely over the range of observed temperatures but produces unrealistic values at lower 

temperatures. 

A similar study was conducted by Lee et al. (2003), but on adult salmon during their spawning 

runs. That study measured RMR as “routine” oxygen consumption at a low swimming speed. 

Measurements were taken at ambient temperatures from 5-20°, but this range was extended to 

23° by “adjusting” some test fish by holding them at higher than ambient temperature. The 
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results were reported as exponential equations fit to the rather highly variable data (RMR varied 

among individuals by as much as a factor of two). Separate equations were fit with and without 

the “adjusted” fish. (The equations were misprinted in the original publication and republished in 

a correction.) 

The results of these two studies fit exponential functions of the type used in the Wisconsin model 

relatively well, but exponential functions fail to capture the steep increase in respiration at 

temperatures > 20°, especially in the adult salmon data (Figure 33). This steep increase appears 

due to physiological breakdown at high temperatures (Eliason et al. 2013a) and is likely to have 

strong effects on model results at high temperatures (inSTREAM results are, in general, quite 

sensitive to respiration rates; Railsback et al. 2009). (Eliason et al. 2013a report other data on 

adult salmon also showing a steep increase in RMR at 25-26º.) 

 

 

Figure 33: Resting metabolic rate as a function of temperature in the studies of Lee et al. (2003) 

and Verhille et al. (2016). Curves with round symbols show the equations developed in those 

publications to fit the data; curves labeled “exponential model” are exponential functions fit to 

the other curves over the range of observed temperatures. The two data sets of Lee et al. are 

without and with fish adjusted to higher than ambient temperatures. 

 

To capture the steep increase in RMR at high temperatures we replace the Wisconsin model’s 

exponential function with an exponential function of the temperature squared: 

𝑟𝑒𝑠𝑝𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑒𝑥𝑝(𝑡𝑟𝑜𝑢𝑡𝑅𝑒𝑠𝑝𝐶 × 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒2). 

This function fits the data more closely at high temperatures and produces little response to 

temperature below 5° (Figure 34). The value of trout-resp-C is simply the exponent found via 

exponential regression of the observed RMR values to temperature2. The curves shown in Figure 
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34 have values of trout-resp-C of 0.0022ºC-2 (Lee et al., ambient fish only), 0.0016ºC-2 (Lee et 

al., ambient and adjusted fish), and 0.0020ºC-2 (Verhille et al.). Small changes in the value of this 

parameter have strong effects. Given values of resp-temperature-function between 1.5 and 3.0 at 

20º, trout-resp-C should fall within the range of 0.0011 to 0.0027. 

 

Figure 34: Respiration temperature functions fit to observations of Lee et al. (2003) and Verhille 

et al. (2016) using an exponential function of the square of temperature (the “exponential2 

model”). The curves with round symbols show the equations fit to data in these publications, 

transformed into the temperature function by dividing their values by respiration at 0 from the 

exponential2 model. The  curves without symbols are the exponential2 models. 

 

The swimming activity function for inSTREAM 7 is also new. Previous versions used the 

Wisconsin model formulation, which assumes the function is an exponential function of 

swimming speed. That formulation does not account for how swimming costs vary with trout 

body size: using it, swimming at (e.g.) 50 cm/s increases respiration by the same percentage 

whether a trout is 5 cm long (for which 50 cm/s would be extremely energetic) or 50 cm long 

(for which 50 cm/s would be only moderately energetic).  

Our solution to this problem is to scale swimming speed as a fraction of trout-max-speed (Sect. 

9.26). (Whiterod et al. 2013 also addressed this problem and developed a similar approach, 

scaling swimming speed by body length.) We found three relevant data sets in the literature. 

(Data for adult salmon have also been published by, e.g., Eliason et al. 2013b, MacNutt et al. 

2006.) Gallaugher et al. (2001) measured oxygen consumption by 30-cm exercise-conditioned 

Chinook Salmon over a range of swimming speeds reported as a percentage of Ucrit (the measure 

of swimming capacity used as the basis of trout-max-speed; Sect. 9.26). Tudorache et al. (2008) 

made similar measurements for 8-cm Brown Trout. For each of these data sets, we converted 

swimming speed from fraction of Ucrit to fraction of trout-max-speed by dividing by 0.9 (we 

calculate trout-max-speed as 0.9×Ucrit; Sect. 9.26). Johansen et al. (2020) measured oxygen 
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consumption by 33-cm Rainbow Trout at water velocities from zero to 100 cm/s (measurements 

of trout not using a velocity shelter), and fit a statistical model to the results; we calculated a 

maximum sustainable swimming speed of 113 cm/s from our submodel (Sect. 9.26). The trout 

used by Johansen et al. (2020) were from a hatchery and apparently not exercise-conditioned. 

The data of Gallaugher et al. (2001), Johansen et al. (2020), and the other data for adult salmon 

cited above, show a steep increase in measured oxygen consumption as swimming speed 

approaches and exceeds trout-max-speed. This steep increase appears to result from trout 

switching to less-sustainable swimming gaits and metabolic processes (Eliason et al. 2013b). The 

Tudorache et al. (2008) data fit an exponential model well, but to capture the steep increase 

observed in other data sets we use an exponential function of the square of swimming speed 

divided by trout-max-speed (Figure 35):  

𝑟𝑒𝑠𝑝𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑒𝑥𝑝(𝑡𝑟𝑜𝑢𝑡𝑅𝑒𝑠𝑝𝐷 × (𝑡𝑟𝑜𝑢𝑡𝑆𝑤𝑖𝑚𝑆𝑝𝑒𝑒𝑑 𝑡𝑟𝑜𝑢𝑡𝑀𝑎𝑥𝑆𝑝𝑒𝑒𝑑⁄ )2). 

The trout data of Tudorache et al. (2008) produce a value of 0.90 for trout-resp-D, the trout data 

of Johansen et al. (2020) produce a value of 2.4, and the Chinook Salmon data of Gallaugher et 

al. (2001) produce a value of 1.60 (all estimated via exponential regression of oxygen 

consumption vs. the square of swimming speed divided by trout-max-speed, with the regression 

intercept set to 1.0). The value of 0.90 appears to be low considering observations, such as those 

of Eliason et al. (2013b; adult Sockeye Salmon), that oxygen consumption rises to 4-5 times 

resting levels during swimming near Ucrit. The value of 2.4 from Johansen et al. is considerably 

higher than from the other datasets, perhaps reflecting the use of hatchery trout. If we assume 

that resident trout are more efficient swimmers than adult salmon, resp-activity-function values 

between 3 and 5 seem reasonable for swimming at trout-max-speed; such values result from 

trout-resp-D in the range of 1.1 to 1.6.  

 

Figure 35: Relation between swimming speed and oxygen consumption, translated into the 

activity function for respiration costs, for 30-cm Chinook Salmon (Gallaugher et al. 2001), 8-cm 

Brown Trout (Tudorache et al. 2008), and 33-cm Rainbow Trout (Johansen et al. 2020). The 

curves represent an exponential regression fit to the square of swimming speed divided by trout-

max-speed. 
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An exploration of the respiration submodel (Figure 36) indicates that total daily respiration cost 

varies strongly with all three driving variables: fish size, temperature, and swimming speed. The 

sharp increase in respiration at low temperatures and moderate swimming speed (top left of the 

contour plots) is due to the use of trout-max-speed in the activity function. Maximum swimming 

speed is low at low temperatures (Sect. 9.26), making the ratio of swimming speed to trout-max-

speed high. Whether or not this result is realistic, it is unlikely to be important because the sharp 

increase in respiration happens only at swimming speeds approaching trout-max-speed (which is, 

at 2° and with the standard parameter values, 18 cm/s for a 5-cm trout and 41 cm/s for a 20-cm 

trout). 

Finally, the resp-activity-function equation produces numerical problems when the ratio of 

swimming speed to trout-max-speed is high: when this ratio is above ~25, the equation produces 

values larger than NetLogo software can handle. (Such values occur during habitat selection 

when model trout evaluate cells with extremely high velocities.) To avoid this problem, 

inSTREAM 7 sets the value of trout-respiration to an arbitrary large number (999,999) when the 

swim speed ratio exceeds 20. 

  

Figure 36. Respiration submodel results as a function of temperature and swimming speed, using 

the parameter values of Table 16. Results are for healthy 5-cm (left) and 20-cm (right) trout. 

Contours indicate simulated total respiration (J/d). 

 

Table 16: Parameters and values for respiration costs. 

Parameter Definition and units Basis Standard value 

trout-resp-A Multiplier in 

allometric term for 

resp-mass-term (J/d/g) 

Rand et al. (1993) 36 
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Parameter Definition and units Basis Standard value 

trout-resp-B Exponent in allometric 

term for resp-mass-

term (unitless) 

Rand et al. (1993) 0.783 

trout-resp-C Parameter in the 

temperature function 

(°C-2) 

Verhille et al. (2016) 0.0020 

trout-resp-D Parameter in the 

activity function 

(unitless) 

Gallaugher et al. 

(2001), Tudorache et 

al. (2008) 

1.4 

 

9.26 Maximum sustainable swimming speed 
This submodel updates the trout state variable trout-max-speed, maximum sustainable swim 

speed (cm/s)52. This state variable is a component of both kinds of feeding, so it strongly affects 

the relationship between a cell’s velocity and habitat quality. This variable represents the highest 

speed that a trout can maintain for long periods—for feeding throughout a time step—so it must 

be a speed that fish can swim for hours, not a burst or short-term maximum speed. The 

formulation for trout-max-speed is based on literature values of “critical swimming speed” 

(Ucrit), a standard approach to estimating maximum sustainable speed in a laboratory test 

chamber. Measurement of Ucrit involves repeatedly stepping up the swimming speed and holding 

it for a specified time interval, until the fish is exhausted; different time intervals can be used to 

estimate short-term vs. long-term sustainable swim speeds. We used long-term values of Ucrit to 

represent trout-max-speed. Myrick (1998) and Farrell (2007) indicate that trout may start to use 

white (fast-twitch) muscle fibers at 90-95 percent of Ucrit. Therefore, a better estimate of the 

speed fish can sustain for long periods is 90 percent of the Ucrit (C. Myrick, Department of Fish, 

Wildlife, and Conservation Ecology, University of California, Davis, pers. comm. with S. 

Railsback, 10 May 1999).  

Ucrit for trout has been measured at different temperatures and fish lengths by a number of 

researchers. These studies examined brown (Butler et al. 1992), cutthroat (Hawkins and Quinn 

1996, MacNutt et al. 2004), and rainbow and golden trout (Schneider and Connors 1982; Taylor 

et al. 1996; Alsop and Wood 1997; Myrick 1998, also published in Myrick and Cech 2000; 

Myrick and Cech 2003). [The study by Griffiths and Alderdice (1972) was not used even though 

it has been the basis of several previous models of maximum swimming speed. Griffiths and 

Alderdice measured juvenile Coho Salmon swimming speed over temperatures between 2 and 

26° C. However, they did not provide sufficient information to distinguish the effects of fish size 

and temperature, and apparently did not control these two variables separately.] In addition, a 

number of measurements have been made of juvenile salmon (Brauner et al. 1992, 1994) and on 

adult salmon on their spawning migrations (e.g., Farrel et al. 2003; Lee et al. 2003; MacNutt et 

al. 2006). 

 
52 Sustainable swim speed is coded in the procedure max-swim-speed-for. However, the length term is updated 

once per time step in procedure update-trout and the temperature term is updated once per time step in 

update-habitat. 
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There is considerable variability among these studies, likely due in part to differences in 

experimental equipment and techniques and to variability in the exercise condition of the fish. 

However, two general conclusions can be drawn. First, trout-max-speed increases with fish 

length (Figure 37). Second, trout-max-speed varies nonlinearly with temperature, peaking at 

temperatures around 10-15º (Figure 38). 

 The formulation for trout-max-speed therefore has two terms: the first represents how swimming 

speed at 10-15º varies with fish length, and the second modifies trout-max-speed for temperature. 

Therefore, we model maximum swim speed as: 

𝑡𝑟𝑜𝑢𝑡𝑀𝑎𝑥𝑆𝑝𝑒𝑒𝑑 = (𝑀𝑆𝑃𝐴 × 𝑡𝑟𝑜𝑢𝑡𝐿𝑒𝑛𝑔𝑡ℎ + 𝑀𝑆𝑃𝐵) × (𝑀𝑆𝑃𝐶 × 𝑇2 +𝑀𝑆𝑃𝐷 × 𝑇 +𝑀𝑆𝑃𝐸) 

where T is temperature and MSPA through MSPE are the parameters trout-max-speed-A through 

trout-max-speed-E. The parameters trout-max-speed-A and trout-max-speed-B define the linear 

relation between trout length and maximum speed; the values for these parameters in Table 17 

were estimated via linear regression on the trout observations shown in Figure 37. The 

parameters trout-max-speed-C through trout-max-speed-E define a quadratic function of 

temperature; the parameter values were fit to the observations in Figure 38. 

Figure 37 indicates that the parameters developed here for trout would highly overestimate swim 

speeds for adult salmon. However, Lee et al. (2003) and MacNutt et al. (2006) produced data 

similar to those in Figure 37 for adult salmon during their spawning migrations; those data 

produce a similar humped response of Ucrit to temperature, with peaks around 15-17°. 

 

Figure 37: Maximum sustainable swim speed, defined as 90% of observed Ucrit, as a function of 

fish length. Values are from measurements made at temperatures between 9.5 and 15°. Round 

symbols are observations of resident trout from the sources cited in Figure 38. Square symbols 

are observations of salmon parr and smolts (9-14 cm length) by Brauner et al. (1992, 1994) and 

of salmon adults (>50 cm length) by Farrell et al. (2003). 
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Figure 38: Variation in maximum sustainable swim speed with temperature. The Y value is 

measured maximum speed divided by speed measured at or near 15° in the same study. 

Observations from six studies are shown separately. The curve illustrates the model’s 

temperature function fit to these data. 

Table 17: Parameters and values for maximum sustainable swim speed 

Parameter name Definition and units Basis Standard value 

trout-max-speed-A Length coefficient in 

relation between trout 

length and maximum 

swim speed (s-1) 

Regression fit to 

observations of 

resident trout (Figure 

37) 

2.8 

trout-max-speed-B Constant in relation 

between trout length 

and maximum swim 

speed (cm/s) 

Regression fit to 

observations of 

resident trout (Figure 

37) 

21.0 

trout-max-speed-C Temperature squared 

coefficient in 

temperature effect on 

maximum swim speed 

(°C-2) 

Regression fit to 

observations of 

resident trout ( 

Figure 38) 

-0.0029 

trout-max-speed-D Temperature 

coefficient in 

temperature effect on 

maximum swim speed 

(°C-1) 

Regression fit to 

observations of 

resident trout ( 

Figure 38) 

0.084 
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Parameter name Definition and units Basis Standard value 

trout-max-speed-E Constant in 

temperature effect on 

maximum swim speed 

(unitless) 

Regression fit to 

observations of 

resident trout ( 

Figure 38) 

0.37 

 

9.27 Spawning readiness 
Female trout (those with trout-sex = “female”) execute this submodel once per day to determine 

whether they will spawn that day53. (Male participation in spawning is described in Sect. 9.30.) 

Salmonids are clearly capable of adapting some of their reproductive behaviors to environmental 

conditions and their own state, especially by deciding whether or when to spawn each year 

considering their current size and condition and habitat conditions (e.g., Nelson et al. 1987). 

However, inSTREAM’s objectives do not justify a detailed representation of such processes as 

the bioenergetics of spawning or the adaptive decision of whether to spawn each year 

considering the fish’s current state and expected growth and mortality risks. Instead, 

inSTREAM’s spawning methods simply force model trout to reproduce general spawning 

behaviors observed in real trout. Spawning-related behaviors and mechanisms are included only 

if they appear important for simulating flow and temperature effects on reproduction or for 

representing the effects of spawning on the adult spawners. 

On the daytime phase of each day, each female trout determines whether it meets all of the fish- 

and habitat-based spawning criteria described below. These spawning criteria limit spawners to 

females of adequate size and physiological condition; and restrict spawning to physical 

conditions (dates, flows, temperatures) when spawning has been observed in real trout, 

presumably because spawning is more likely to be successful under those conditions. The criteria 

for readiness to spawn do not include the availability of good spawning habitat; we assume trout 

will spawn whether or not ideal gravel spawning habitat is present. Observations reported by 

Magee et al. (1996) support that assumption. 

On the days when all the spawning criteria are met for a female, a random Bernoulli trial 

determines whether she actually spawns; the probability of spawning is the trout parameter trout-

spawn-prob (unitless). This stochastic selection of spawning date imposes some variability in 

when individual fish spawn, which can be important to the population’s reproductive success. In 

some situations, flow fluctuations during the spawning season can scour or desiccate redds 

during short periods. Variation in when fish spawn can keep such events from causing unnatural 

population-level reproductive failure. Imposing variability in spawning times can also be 

necessary to reproduce observations at some sites, e.g., more variation in spawn timing where 

physical habitat is more diverse (Jonsson and Jonsson 2011). The value of trout-spawn-prob also 

gives the model user some control over what percent of spawning-sized fish actually spawn. If 

the inverse of trout-spawn-prob is large compared to the number of days in the spawning period 

(e.g., 1 / trout-spawn-prob is greater than the number of potential spawning days), then it is 

likely that some potential spawners will not spawn. A typical value of 0.04 causes an average of 

 
53 Spawning readiness is programmed in the procedure ready-to-spawn?. However, the random draw against 

trout-spawn-prob is in the procedure spawn. 
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25 percent of ready fish to spawn in the first week of suitable conditions and 68 percent to spawn 

in 28 days of suitable conditions.  

The following subsections describe the spawning criteria, with example parameter values in 

Table 18. None of these criteria are well defined in the literature because trout spawning is 

difficult to observe. The criteria include characteristics of both the potential spawner and its 

habitat reach. The criteria based on flow and temperature are evaluated using the habitat reach 

currently occupied by the potential spawner; inSTREAM does not represent migration to 

different reaches in search of better spawning conditions. 

9.27.1 Minimum age, length, and condition 

Because inSTREAM does not explicitly simulate the bioenergetics of reproduction, it uses trout 

length, age, and condition to predict energetic readiness to spawn. Minimum values of these 

characteristics are used to ensure that only fish with energy reserves comparable to those needed 

for gonad production can actually spawn. The habitat and activity selection submodel provides 

no incentive for model trout to gain size or condition in preparation for spawning, so this 

submodel should not demand that females have extremely high condition to spawn. Length and 

condition are the primary indicators of spawning readiness as they are related to energy reserves, 

but the age minimum is useful in model runs where fish growth and condition are not well 

calibrated. The length and age criteria are also important for imposing site-specific variation in 

spawning size and age that, in real fish, could be local adaptations (behavioral or genetic) to 

habitat and competitive conditions. These criteria simplify many complex factors that drive the 

age and size at which salmonids spawn. 

Female trout in inSTREAM cannot spawn unless their age (trout-age) equals or exceeds the 

value of the parameter trout-spawn-min-age, an integer age in years. Trout also cannot spawn 

unless their length (trout-length) exceeds the parameter trout-spawn-min-length (cm). (This 

parameter is also a key variable in the fitness measure used as a basis of habitat and activity 

selection decisions; Sect. 9.13.2.) Finally, for a trout to spawn, its condition factor trout-

condition must exceed the parameter trout-spawn-min-cond (unitless).  

Values for trout-spawn-min-age and trout-spawn-min-length can vary considerably among sites 

and can often be estimated from site-specific census data. For Cutthroat Trout in the relatively 

small, infertile Little Jones Creek, Railsback and Harvey (2001) used 1 y for trout-spawn-min-

age: field observations indicated that spawning in age 1 trout occurs, if rarely. Rosenberger et al. 

(2015) also documented spawning by age-1 in Rainbow Trout in small streams providing rapid 

growth. Railsback and Harvey (2001) based a value of 12 cm for trout-spawn-min-length on 

their field observations and studies of similar sites. In contrast, Meyer et al. (2003) found that 

trout in the large South Fork Snake River did not mature until they were 30 cm long and five 

years old, and provide data on how these spawning age and size parameters can vary with habitat 

conditions. Parra et al. (2014) modeled how these characteristics varied with altitude and latitude 

in European populations of Brown Trout. Carlson and Seamons (2008) review evidence 

indicating that these characteristics are genetically heritable yet likely to respond rapidly to 

environmental change. 

Considering (a) the non-standard definition of condition factor (Sect. 9.20); (b) that the growth 

formulation causes trout-condition to be less than 1.0 on any time step a fish’s energy intake is 

less than respiration costs, such as when hiding; and (c) that the bioenergetics of reproduction are 

not explicitly represented and trout have no incentive to put on weight in anticipation of 
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spawning, a trout-spawn-min-cond value close to 0.98 is appropriate. Preliminary model results 

for condition can also be used to estimate a value that represents relatively successful individuals 

at the time of spawning. 

9.27.2 Not spawned this season 

Trout are assumed not to spawn more than once per annual spawning season. The trout (both 

males and females) in inSTREAM have a variable trout-spawned-this-season? set to FALSE on 

the first day of the spawning season (as defined in Sect. 9.27.3), and then set to TRUE when the 

trout spawns. Trout—females and males—cannot spawn if their value of trout-spawned-this-

season? is TRUE. 

9.27.3 Date window 

Salmonids generally have distinct annual spawning seasons, which is not surprising because time 

of year is an important predictor of factors critical to successful spawning. For example, early 

spring spawning may make eggs and fry more vulnerable to cold temperatures or streambed 

scour from high flows from snowmelt, but spawning too late may make offspring more 

vulnerable to high temperatures and reduce their ability to compete with earlier-spawned 

juveniles. Therefore, in inSTREAM fish can spawn only on days within a user-specified date 

window.  

Two trout parameters, trout-spawn-start-day and trout-spawn-end-day, define the first and last 

dates on which spawning can occur. These parameters specify a month and day of the month (in 

M/d format) applicable to all years. (The spawning window can extend from the end of one year 

into the next; for example, trout-spawn-start-day can be 12/1 with trout-spawn-end-day 2/1.) 

Table 18 provides example values.  

9.27.4 Temperature range 

Temperature is widely accepted as a factor controlling the timing of spawning (e.g., Lam 1988). 

Temperature could be used by potential spawners as a cue for seasonal changes, and spawners 

likely avoid temperatures that induce egg mortality (sects. 9.32 and 9.33). Specifying the time 

scale at which temperature is evaluated is an important part of this criterion: do potential 

spawners consider only the temperature at the current time step, or temperatures over some 

previous time period? This question is especially important because inSTREAM 7 can use 

temperature input that includes within-day variation.  

We model the temperature criterion explicitly at a daily time scale. A daily mean temperature is 

estimated by obtaining a list that contains all temperature input values associated with the 1.0-

day period that ends at sim-time (the end of the current time step, which, for spawning, is in the 

afternoon before dusk starts), for the reach currently occupied by the trout. If that list is empty 

(e.g., because only weekly input is used), the current value of the reach variable temperature is 

added to it. When daily input is used in the recommended format, with each day’s input 

associated with noon that day (Sect. 8.1), this list will contain only the current day’s temperature. 

If input is provided at sub-daily intervals, this list can contain more values. If the input is 

provided at intervals longer than one day, this list could contain only the current temperature.  

A trout can spawn only if the mean of the temperatures on this list is (a) equal to or greater than a 

trout parameter for minimum spawning temperature (trout-spawn-min-temp, °C) and (b) less 

than or equal to the parameter trout-spawn-max-temp (°C). We recommend that the values for 
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these parameters reflect the temperatures assumed to cause egg mortality; Table 18 provides 

example values.  

9.27.5 Flow limit 

The flow limit criterion implements the assumption that fish will not spawn during high flow 

events. During unusually high flow, cells with depths and velocities suitable for redds (Sect. 

9.29) are likely to be along river margins where redds would be at risk of dewatering when flows 

recede; and redds are vulnerable to scouring during high flows (Sect. 9.35).  

The same time scale issues discussed above for temperature (Sect. 9.27.4) are also relevant for 

the flow limit. We use 1.0 day as the time scale: the criterion uses the maximum of all flows in 

the input file associated with times within a 1.0-day period that ends at sim-time and, if there are 

no such flows, it uses instead the current value of the reach variable flow. A trout is not allowed 

to spawn if this flow is greater than the value of reach parameter reach-max-spawn-flow (m3/s). 

(This is a habitat parameter instead of a trout parameter because it varies among reaches.) This 

parameter is highly site-specific.  

When multiple reaches are simulated, a trout can spawn in a different reach than the one it 

occupies when deciding whether to spawn. However, the flow limit is always evaluated using the 

flows and value of reach-max-spawn-flow of the currently occupied reach. 

9.27.6 Steady flows 

Trout are assumed not to spawn during unsteady flows because flow fluctuations place redds at 

risk of dewatering or scouring. We use a time scale of two days to evaluate this criterion. The 

trout parameter trout-spawn-max-flow-change (unitless) defines the maximum flow variability 

for spawning: if the maximum fractional change in flow—in the trout’s current reach—over the 

current and previous day exceeds trout-spawn-max-flow-change then trout cannot spawn.  

The maximum fractional change in flow is determined by creating a list containing all flow 

values in the input associated with the time interval between sim-time and 2.0 days before sim-

time. With standard daily input associated with noon (Sect. 8.1), this list will have two values, 

from the current and previous days. If flow input is at intervals of greater than 1.0 day, the list 

may have only one value, for the current day. In that case, we assume that the input does not 

have sufficient resolution to evaluate flow steadiness so this criterion is ignored. 

The maximum fractional change in flow is evaluated as: 

 fracFlowChange = abs(Qmax – Qmin) / Qmin 

where Qmax and Qmin are the maximum and minimum values on the list of flows and abs() is the 

absolute value function. Van Winkle et al. (1996) and Railsback and Harvey (2001) used 0.2 for 

trout-spawn-max-flow-change. 

Table 18: Example parameter values for spawning readiness 

Parameter Definition and units Basis Example values 

trout-spawn-min-age Minimum age (years) 

at which trout can 

spawn 

Site-specific estimates Small streams: 1-2 

years 

Large rivers: 3-5 years 
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Parameter Definition and units Basis Example values 

trout-spawn-min-

length 

Minimum length (cm) 

at which trout can 

spawn 

Site-specific estimates Small streams: 10-15 

cm 

Large rivers: 20-30 cm 

trout-spawn-min-cond Minimum value of 

trout-condition for 

female spawners 

(unitless) 

Should be relatively 

high but consider that 

trout-condition is 

always < 1.0  

0.98 

trout-spawn-start-day Day of the year that 

that spawning season 

begins (M/d) 

Site- and species-

specific estimates 

Sierra Nevada 

Rainbow Trout (Van 

Winkle et al. 1996): 

4/1 

Sierra Nevada Brown 

Trout (Van Winkle et 

al. 1996): 10/1 

Coastal Cutthroat 

Trout (Railsback and 

Harvey 2001): 4/1 

trout-spawn-end-day Day of the year (M/d) 

that is the last day of 

the spawning season 

Site- and species-

specific estimates 

Sierra Nevada 

Rainbow Trout: 6/30 

Sierra Nevada Brown 

Trout: 12/31 

Coastal Cutthroat 

Trout: 5/31 

trout-spawn-min-temp Minimum temperature 

(on the current time 

step, in the trout’s 

reach) at which 

spawning can occur 

(°C) 

Create a spawning 

temperature range that 

excludes temperatures 

causing significant 

temperature mortality 

to eggs (sects. 9.32, 

9.33) 

Sierra Nevada 

Rainbow Trout (Van 

Winkle et al. 1996): 8 

Sierra Nevada Brown 

Trout (Van Winkle et 

al. 1996): 4 

trout-spawn-max-

temp 

Maximum temperature 

at which spawning can 

occur (°C) 

 Sierra Nevada 

Rainbow Trout (Van 

Winkle et al. 1996): 13 

Sierra Nevada Brown 

Trout (Van Winkle et 

al. 1996): 10 

trout-spawn-max-

flow-change 

Maximum flow 

change (as fraction of 

current flow) after 

which trout can spawn 

Van Winkle et al. 

(1996), Railsback and 

Harvey (2001) 

0.2 
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9.28 Spawning 
A female trout that meets all criteria for spawning, including the Bernoulli trial against parameter 

trout-spawn-prob, then spawns and creates a redd. (We refer here to such trout as “spawners”.) 

Spawning includes five steps54. 

The first spawning step is selecting and moving to a spawning cell, using the spawning site 

selection submodel (Sect. 9.29). (The only effect this move has on the spawner is that when it 

next selects its habitat and activity it starts from the cell it spawned in.)  

The second spawning step is creating a redd. A spawner creates a new redd with its location set 

to the spawning cell. The redd’s state variables (Sect. 4.1.5) are initialized by setting redd-species 

to the spawner’s species (its value of trout-species), redd-frac-developed to 0.0, and redd-

emerge-days to 0 d. The initial value of redd-num-eggs depends on the spawner’s fecundity (a 

function of length) and losses during spawning:  

𝑛 = (𝑚𝐿𝐸) × 𝑉 

where n is the value given to the new redd’s variable redd-num-eggs, m is the trout parameter 

trout-spawn-fecund-mult, L is the spawner’s length (trout-length), E is the parameter trout-

spawn-fecund-exp, and V is the parameter trout-spawn-egg-viability55. 

The first term in this equation calculates the spawner’s fecundity, the number of eggs it produces. 

Relations between fecundity and length are surprisingly variable even within species. Van 

Winkle et al. (1996) developed values of trout-spawn-fecund-mult and trout-spawn-fecund-exp 

for Brown Trout from Avery (1985). These values (Table 19, Brown Trout values) result in 

fecundities of 60 eggs for a small spawner of 12 cm and 220 eggs for a spawner of 20 cm, 

corresponding well with citations provided by Carlander (1969). Meyer et al. (2003) developed 

parameters for fecundity from 26 observations of resident Cutthroat Trout, with lengths between 

10 and 30 cm. The total lengths reported by Meyer et al. were converted to fork length by 

applying a ratio of 0.97 (Carlander 1969). The resulting parameter values (Table 19, Cutthroat 

Trout values) produce fecundities approximately 50 percent higher than those of Van Winkle et 

al. (1996). Parra et al. (2014) evaluated variation in the fecundity parameters with altitude and 

latitude in European Brown Trout. The differences between the two parameter sets reported in 

Table 6 may be more a result of random variation or differences among sites than real differences 

among trout species. 

The second term, trout-spawn-egg-viability, represents the fraction of eggs successfully 

fertilized and placed in the redd. (Even though trout-spawn-egg-viability has the same effect 

mathematically as trout-spawn-fecund-mult, fecundity and egg viability are treated separately to 

allow clear use of the extensive literature on fecundity.) The number of viable eggs in a redd can 

be considerably less than the female’s fecundity if some eggs are washed away, incompletely 

buried, or eaten by other fish during redd creation; or if some are not fertilized. This parameter 

can also be used to represent mortality of eggs and alevins due to processes not explicitly 

included in the model’s redd survival action. There is little published literature to support 

consistent values of trout-spawn-egg-viability for stream salmonids. For example, Healey (1991) 

found only a few, conflicting, studies on egg deposition and loss for Chinook Salmon. He 

concluded that egg loss is often low but can be high in high-velocity streams. Anecdotal evidence 

 
54 With the exceptions in other footnotes, spawning is coded in the procedure spawn. 

55 The number of viable eggs is calculated in num-viable-eggs. 
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from salmon and trout in coastal California suggests that the number of emerging eggs often 

ranges down to 50-60% of the female’s fecundity. 

Table 19: Parameter values for fecundity and egg viability 

Parameter Definition and units Basis Values 

trout-spawn-fecund-

mult 

Multiplier in fecundity 

equation (eggs per cm 

spawner length) 

Van Winkle et al 

(1996), Meyer et al. 

(2003) 

Brown Trout: 0.11 

Cutthroat Trout: 0.18 

trout-spawn-fecund-

exp 

Exponent in fecundity 

equation (unitless) 

Van Winkle et al 

(1996), Meyer et al. 

(2003) 

Brown Trout: 2.54 

Cutthroat Trout: 2.51 

trout-spawn-egg-

viability 

Fraction of fecundity 

that become viable 

eggs in redd (unitless) 

Estimate 0.8 

 

The third spawning step is to represent superimposition, the potential mortality of eggs in other 

redds in the same cell. Superimposition occurs when one spawner digging a redd displaces eggs 

from an existing redd, making those eggs vulnerable to being eaten or deposited where they 

cannot survive. In heavily used spawning gravels, superimposition can be high and even limit the 

reproductive capacity of a stream (McNeil 1964). Previous versions of inSTREAM represented 

superimposition as part of the redd survival schedule (Sect. 5), but we now represent it as a one-

time action of a spawner; this change has no effect on simulated rates of superimposition. The 

spawner simply causes all existing redds in the spawning cell to execute the superimposition 

mortality submodel described in Sect. 9.36. InSTREAM’s formulation neglects redd guarding by 

females: more than one redd can be created in the same cell on the same day, with 

superimposition. It also neglects variation among individual spawners in the size and depth of 

redds. 

In the fourth step, a spawner uses the mate selection submodel of Sect. 9.30 to identify a male 

that also spawns.  

In the final spawning step, the spawner and her selected mate incur a weight loss that represents 

the energetic cost of spawning. Hayes et al. (2000) cite literature indicating a typical loss, for 

both male and female trout, of 18% of mass and 45% of energy content upon spawning (e.g., 

Lien 1978). This energy loss can significantly affect the habitat selection and survival of 

spawners, so it is included in inSTREAM. When any trout—male or female—spawns, its weight 

is reduced according to the parameter trout-spawn-wt-loss-fraction: its value of trout-weight is 

multiplied by (1.0 - trout-spawn-wt-loss-fraction) and its value of trout-condition recalculated 

for the new weight. Hayes et al. (2000) support a value of 0.2 for trout-spawn-wt-loss-fraction. 

This loss affects habitat selection in future time steps, causing spawners to take additional risks 

to regain weight and reduce starvation risk. Under typical conditions, a 20% loss of weight and 

condition reduces the probability of survival for 90 days by about 10-15%, while a 30% loss 

reduces this probability by about 40% (Railsback et al. 2009). 
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9.29 Spawning site selection 
This submodel defines how female spawners select the cell in which they build a redd56. While 

selection of habitat for foraging is modeled mechanistically (Sect. 9.13), selection of spawning 

habitat is modeled in a simple, empirical way, with spawning cells chosen using preferences for 

depth, velocity, and substrate observed in real trout. We chose this design because a detailed, 

mechanistic representation of spawning habitat selection would require considerable additional 

complexity: it would require modeling processes such as intergravel flow and water quality, 

which are extremely data-intensive and uncertain. This additional complexity is not necessary to 

meet inSTREAM’s objectives (Sect. 3.1). We do, however, need a simple representation of how 

flow affects redd placement because a redd’s location affects its survival of dewatering (Sect. 

9.34) and the habitat conditions that its newly emerged juveniles are exposed to.  

Spawning site selection is driven in part by the cell variable cell-frac-spawn (Sect. 4.1.3). This 

variable is input to the model (Sect. 9.1), so it must be evaluated from field observations (Sect. 

22.2 provides guidance). The variable represents the estimated fraction of cell area made up of 

spawning gravel usable by the species being modeled.  

We assume that spawning habitat selection is driven only by cell depth, velocity, and spawning 

gravel availability. Selection is not affected by the size of spawning gravel patches (the cell area 

with spawning gravel), nor by whether any redds already exist in a cell (discussed in Sect. 9.36). 

We also ignore variation in spawning gravel quality among cells. These simplifying assumptions 

could be replaced when necessary to address specific spawning issues. 

The first spawning site selection step is for the spawner to identify all the cells that are potential 

spawning sites. This step uses exactly the same method used by model trout to identify potential 

destination cells during habitat selection (Sect. 9.13.1): spawners are assumed to select a cell 

within a radius that defines the area of habitat they are familiar with, using the parameters trout-

move-dist-A and trout-move-dist-B. This formulation does not cause, or allow, long spawning 

migrations.  

For simulations with multiple habitat reaches, the potential spawning cells could include cells in 

a different reach from the spawner’s current cell. That means that a spawner could place its redd 

in a cell in another reach even if the habitat criteria for spawning (Sect. 9.27) are not all met in 

that other reach. This possibility occurs because we judged it not important enough to justify the 

complexity of preventing it. 

After a spawner identifies potential spawning cells, it excludes from consideration those with 

area of spawning gravel (cell-area × cell-frac-spawn) less than the trout parameter redd-area. 

However, if no cells meet this gravel-area threshold then no cells are excluded: we assume that if 

no cells offer sufficient gravel area the trout still spawns and selects a cell by considering only 

depth and velocity. The parameter redd-area is an estimate of the area (cm2) of a typical redd; its 

meaning and values are discussed in Sect. 9.36. 

The second step is for the spawner to rate the potential spawning cells by calculating the variable 

spawn-suitability for each, where:  

spawnSuitability = depthSuitability × velocitySuitability.  

 
56 Selection of the spawning cell is coded in the reporter spawn-cell. 
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The variables depth-suitability and velocity-suitability are unitless habitat suitability factors 

determined using methods described below.  

The third step is selecting a cell. If no cells offer spawn-suitability greater than zero, then the 

spawner places its redd in its current cell instead of using the method in the following paragraph. 

(This condition will very rarely occur in most applications, especially if the value of reach-max-

spawn-flow is well-chosen.) 

The spawner does not simply select the cell with highest value of spawn-suitability (as in 

previous versions of inSTREAM), but instead selects one of the cells with spawn-suitability 

close to the highest value. This assumption prevents the unrealistically high superimposition redd 

mortality (Sect. 9.36) that can result from assuming trout precisely identify the most-suitable 

cell. The parameter trout-spawn-suitability-tol represents uncertainty or tolerance in a spawner’s 

rating of spawning suitability: the spawning cell is selected from “suitable cells”, which are the 

potential spawning cells with spawn-suitability greater than (1.0 - trout-spawn-suitability-tol) × 

Smax where Smax is the highest value of spawn-suitability among all the potential spawning cells. 

Users can explore how the value of trout-spawn-suitability-tol affects superimposition mortality 

of redds; we preliminarily suggest a value of 0.1, so that cells with suitability greater than 90% 

of Smax are considered for spawning. 

Selection of the spawning cell from the suitable cells uses a weighted random draw (“roulette-

wheel selection”), in which the probability of a cell being chosen is proportional to its area of 

spawning gravel. (The random draw method is fully described in the NetLogo user manual 

section on the “Rnd” extension.) This method makes spawners choose a cell that has gravel 

while giving each unit area of spawning gravel equal probability of being chosen. (For example, 

a cell with 2000 cm2 of gravel has twice the probability of being chosen as a cell with 1000 cm2.) 

Spawners will not choose a cell with no gravel unless none of the suitable cells has any gravel; in 

that case, all suitable cells have equal probability of being chosen. 

The suitability factors depth-suitability and velocity-suitability represent the tendency of 

salmonids to select fairly well-defined ranges of depth and velocity for spawning (e.g., Knapp 

and Preisler 1999; Gortázar et al. 2012). Presumably, real trout select these ranges because they 

correspond to hydraulic conditions favorable to egg survival. For example, intermediate depths 

have highest suitability probably because redds placed in shallow water are susceptible to 

dewatering if flows decline and redds in deep water are more vulnerable to scouring during high 

flows or siltation during low flows. Intermediate velocities have highest suitability, presumably 

because low velocities provide inadequate flow of water through the redd (important for 

providing oxygen and removing wastes) and high velocities present a risk of scouring. Depth and 

velocity suitability functions are certainly a simplification of how salmonids select spawning 

habitat, but they are an appropriate simplification for inSTREAM and the literature provides 

them for a variety of species and sites (e.g., Gard 1997; Gortázar et al. 2012; Louhi et al. 2008).  

The values of depth-suitability and velocity-suitability are interpolated linearly from suitability 

relations provided as parameters. These parameters are referred to as trout-depth-suitability and 

trout-velocity-suitability although each of these parameters is actually a table of (a) depths or 

velocities and (b) corresponding suitability values. The suitability values normally range between 

0.0 and 1.0 but are allowed to have any positive range, e.g., to give velocity stronger effect than 

depth. The parameter tables (e.g., Table 20) can have any number of rows (X-Y pairs). Figure 39 
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illustrates example values estimated from several Brown Trout spawning criteria sets (PG&E 

1994). 

Table 20: Example values for trout-depth-suitability and trout-velocity-suitability. 

Cell depth (cm) depth-suitability Cell velocity (cm/s) velocity-suitability 

0 0.0 0 0.0 

5 0.0 10 0.0 

50 1.0 20 1.0 

100 1.0 75 1.0 

1000 0.0 100 0.0 

  1000 0.0 

  

 

Figure 39: Spawning depth and velocity suitability relations, for the parameter values in Table 

20. 

 

9.30 Spawning mate selection 
When a female spawns, it attempts to select a male that also spawns57. The only purpose of 

identifying a male spawner is to impose spawning weight loss (Sect. 9.28) on the male. The 

female selects as its mate the largest fish in the simulation that meets all the male spawner 

criteria listed below. The largest male is chosen because larger males are assumed more likely to 

be sexually mature (Meyer et al. 2003), and more likely to compete successfully to fertilize 

females (Fleming and Reynolds 2004; Jones and Hutchings 2002).  

If several females spawn on the same day, the male selected by each female becomes unavailable 

for subsequent females. If no male meets the criteria as a spawner, there is no effect on the 

female: it still produces a fertile redd and incurs weight loss due to spawning. This assumption is 

made because spawning failure due to absence of males is considered too rare and unpredictable 

 
57 Mate selection is implemented in the procedure spawn. 
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to include in the model (e.g., Jonsson and Jonsson 2011 indicate that males typically remain in 

spawning areas longer than females do and can spawn multiple times). Males do not move as a 

result of spawning because such movement is assumed to have negligible effect. 

To identify a male spawner (if there is one), a spawning female identifies the largest male trout 

that: 

Is of the same species as the female; 

Occupies the same reach as the female (after the female has moved to her spawning cell); 

Has length greater than trout-spawn-min-length; 

Has age equal to or greater than trout-spawn-min-age; 

Has condition greater than trout-spawn-min-cond; and 

Has not previously spawned during the current spawning season, as defined in Sect. 9.27.2. 

9.31 Redd survival 
The redd survival submodel determines how many of a redd’s eggs survive or die; it is executed 

for each redd on each time step58. (This submodel does not include superimposition mortality of 

eggs, which inSTREAM 7 treats as part of spawning; Sect. 9.28.) For each specific source of 

redd mortality (except scouring, explained below), the redd survival model uses the relevant 

submodel (described in the following sects. 9.32 to 9.35) to calculate the mean rate of egg 

mortality for the time step and then stochastically determines how many eggs die. The following 

steps are used for each mortality source. 

First, the mean mortality rate for the time step is calculated. The daily survival rate (expected 

fraction of eggs surviving for one day, given the current habitat conditions) is calculated by the 

relevant mortality submodel, then converted to a mortality rate (here, M) by subtracting it from 

one. Second, the number of eggs that die is then drawn from a random Poisson distribution with 

the distribution parameter set to M × redd-num-eggs × step-length. (This distribution models the 

integer number of times that an event occurs—here, an egg dies—within a time period, given the 

mean rate of occurrence for a unit time— M × redd-num-eggs—multiplied by the length of the 

time period (step-length days).) This Poisson distribution draw can produce a number greater 

than redd-num-eggs; in that case, the number of eggs that die is set to redd-num-eggs. (Previous 

versions of inSTREAM modeled egg mortality using a random Bernoulli distribution, which 

models the number of times some event happens in a specified number of trials, given the 

probability of one event per trial. Using the Poisson distribution is expected to have negligible 

difference and allows use of NetLogo’s efficient code for it.) 

Scouring mortality is an exception to the above steps because it is modeled as Boolean: a redd’s 

eggs either all survive or all die in a scouring event (Sect. 9.35). 

Finally, the number of eggs that die are subtracted from the redd’s variable redd-num-eggs. 

The model executes the redd mortality submodels sequentially, so eggs killed by one mortality 

source are subtracted from the number still alive before the next is evaluated. The order in which 

 
58 Redd survival is programmed in procedure redd-survive.  
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redd mortality sources are executed is defined in Sect. 5. If redd-num-eggs reaches zero, the 

empty redd is immediately removed from the simulation. 

We selected and designed the redd mortality submodels to reflect inSTREAM’s primary purpose 

of predicting how flow and temperature regimes affect trout populations. For example, spawning 

gravel quality has several effects on redd success (Kondolf 2000) but is not represented in 

inSTREAM because those effects are at most indirectly related to flow regime. For some redd 

mortality sources (especially, dewatering), more detailed and mechanistic approaches are 

available in the literature and could be added to inSTREAM in situations where these mortality 

sources are believed to be important. 

Users may encounter an artifact of the redd mortality methods that can make simulated egg 

survival slightly higher than expected when survival probabilities are low. The combination of an 

integer (Poisson) distribution for the number of eggs that die and inSTREAM 7’s short time steps 

yield many time steps with zero egg deaths even when daily survival probability is relatively 

low. InSTREAM 7 can produce four time steps of zero mortality per day when a single daily 

time step would produce several deaths. This artifact is unlikely to significantly affect 

inSTREAM population-level results but may be apparent in tests of egg survival results. 

9.32 Low temperature redd mortality 
Both low and high temperatures cause mortality in eggs, over different ranges from those causing 

mortality in fish. Mortality due to high and low temperatures are modeled separately. Logistic 

functions represent the available data well59.  

The daily fraction of eggs surviving low temperatures is modeled as an increasing logistic 

function of temperature. Parameter values appear to differ among trout species, with differences 

especially likely between species (or stocks) that spawn in the fall versus spring. Developing 

parameter values from published data on egg survival typically requires careful conversion of the 

time scale: published data is often reported as survival over the duration of an experiment, which 

much be converted to the daily scale used for inSTREAM’s parameters. For example, 80% 

survival over a 60-day incubation period is equivalent to  daily survival probability of 0.9963 

(0.996360 = 0.8). Because eggs incubate slowly at low temperatures, even apparently high daily 

survival rates can result in low egg survival over the entire incubation period.  

Parameter values for spring-spawning Rainbow Trout and fall-spawning Brown Trout (Table 21; 

Figure 40) were estimated from data compiled by Brown (1974). For Rainbow Trout, Brown 

(1974) indicates that eggs have a 90 percent survival rate over a 100-d incubation period at 3° C 

(daily egg survival = 0.999). We assumed a daily survival rate of 0.9 (very low long-term 

survival) for 0° C, and fit logistic parameters to these survival rates at 0 and 3° C. For Brown 

Trout, Brown (1974) cited data indicating that Brown Trout egg incubation can take over 150 

days at very low temperatures. Parameter values for Brown Trout were estimated by assuming 90 

percent egg survival over 150 days at 1º C (daily survival of 0.9993) and daily survival of 0.9 at 

0º; however, Ojanguren and Braña (2003) and Réalis-Doyelle et al. (2016) provide and cite data 

on how Brown Trout egg survival varies with temperature. 

 
59 Calculation of low temperature survival is in the reporter redd-survival-lo-temp-for. 
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Figure 40: Redd survival rates for low and high temperature, using example parameters of Table 

21. 
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Table 21: Parameters and values for low and high temperature mortality in redds 

Parameter Meaning and units Species, parameter 

value source 

Values 

mort-redd-lo-temp-T1 Temperature (° C) at 

which the mean daily 

low temperature 

survival rate is 0.1 

Rainbow Trout; 

analysis of data 

compiled by Brown 

(1974) 

-3.0 

Brown Trout; analysis 

of data compiled by 

Brown (1974) 

-0.8 

mort-redd-lo-temp-T9 Temperature (° C) at 

which the mean daily 

low temperature 

survival rate is 0.9 

Rainbow Trout; 

analysis of data 

compiled by Brown 

(1974) 

0.0 

Brown Trout; analysis 

of data compiled by 

Brown (1974) 

0.0 

mort-redd-hi-temp-T1 Temperature (° C) at 

which the mean daily 

high temperature 

survival rate is 0.1 

Rainbow Trout; 

analysis of data by C. 

Myrick (Department 

of Fish, Wildlife, and 

Conservation Ecology, 

University of 

California, Davis, 

pers. comm. with S. 

Railsback, 1998) 

30 

Brown Trout; estimate 26 

mort-redd-hi-temp-T9 Temperature (° C) at 

which the mean daily 

high temperature 

survival rate is 0.9 

Rainbow Trout; 

analysis of data by 

Myrick 

21 

Brown Trout; estimate 16 

9.33 High temperature redd mortality 
High temperatures can be directly lethal to trout eggs, while sub-lethal temperatures can promote 

fungus and disease60. The fraction of eggs surviving high temperatures is modeled as a 

decreasing logistic function of temperature (Figure 40). Parameter values for Rainbow Trout 

(also used for Cutthroat Trout by Railsback and Harvey 2002) are based on interim results of lab 

studies conducted by Myrick (1998). These data showed daily survival rates declining from 

about 0.9998 at 11° C to about 0.985 at 19° C. The resulting parameter values (Table 21) appear 

to indicate high survival at high temperatures, but in fact cause low survival if temperatures 

remain elevated for long periods. Fall-spawning trout are likely to be less adapted to high 

 
60 Calculation of high temperature survival is in the reporter redd-survival-hi-temp-for. 
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incubation temperatures. We arbitrarily set the parameter values for Brown Trout in Table 21 to 

5º less than the Rainbow Trout values, but Ojanguren and Braña (2003) and Réalis-Doyelle et al. 

(2016) provide and cite relevant data. (Martin et al. 2017 discuss and model high temperature 

mortality in salmonid eggs and suggest a mechanism that may cause temperature to have 

stronger effects at lower temperatures than indicated by laboratory studies: limited oxygen 

transfer at low water velocities.)  

9.34 Dewatering redd mortality 
Dewatering mortality occurs when declining flow exposes a redd to air; eggs can be killed by 

desiccation or the buildup of waste products that are no longer flushed away61. Reiser and White 

(1983) did not observe significant mortality of eggs when water levels were reduced to 10 cm 

below the egg pocket for several weeks. However, they also cited literature indicating high 

mortality when eggs and alevins are only slightly submerged (which may yield poorer chemical 

conditions than being dewatered), and high mortality for dewatered alevins. Because inSTREAM 

does not distinguish between eggs and alevins, these processes are not modeled mechanistically 

or in detail. The dewatering survival function is simply that if depth is zero then the daily 

fraction of eggs surviving equals the fish parameter mort-redd-dewater-surv. This parameter has 

a suggested value of 0.9, which reflects the variability in dewatering effects. Egg survival may be 

high when a redd is first dewatered, which provides further support for mort-redd-dewater-surv 

values near 1.0. 

9.35 Scour redd mortality 
This submodel represents redd mortality due to both scour and deposition, which occur when 

high flows move streambed sediment, eroding some areas and depositing sediment on others62. 

Eggs scoured out of a redd face very high risk of mortality. Deposition of new sediment on top of 

a redd can reduce water flow through the redd so that inadequate transport of oxygen and waste 

materials kills eggs, and may prevent trout from emerging. Deposition is especially likely to 

reduce survival if it includes fine sediment. Redd scour mortality can be very important to trout 

populations and communities. For example, Strange et al. (1992) found that the frequency of 

winter redd scour events determined the relative abundance of brown vs. Rainbow Trout in a 

Sierra Nevada stream.  

The mechanisms of scour in salmonid spawning gravel have been studied in detail by Wilcock et 

al. (1996), Haschenburger (1999), May et al. (2009), Cienciala and Hassan (2013), and Gauthey 

et al. (2017). These field studies all support several conclusions about modeling redd scour. First, 

they support the use of Shields stress at the peak flow as a predictor of scour during high flows. 

(Shields stress is a dimensionless measure of the force exerted by flow on a streambed, 

commonly used in modeling sediment transport.) For example, May et al. (2009) found a sharp 

threshold in Shields stress above which gravel movement became widespread, and several of 

these studies found strong, nonlinear relations between reach-averaged Shields stress and the 

extent of gravel disruption. Second, the relation between local (e.g., at the scale of cells in 

inSTREAM) Shields stress and gravel movement is highly stochastic: while the relation between 

Shields stress and scour can be strong at a reach scale, whether gravel at any particular location 

 
61 Calculation of dewatering survival is in the reporter redd-survival-dewater-for. 

62 Redd scour survival is coded in the procedure redd-survival-scour-for. Whether flow has peaked and the 

reach shear stress parameter are calculated in the procedure update-redd-scour-vars, which is called from 

update-habitat. 
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moves is much less predictable. Factors contributing to unpredictability include hydraulic 

features at scales finer than cells and that scour in one event can depend on how gravel moved in 

previous events. A third conclusion is that the vulnerability of a redd to scour depends strongly 

on the redd depth: shallow redds are much more vulnerable than deep ones.   

Given the difficulty and uncertainty of predicting scour at the cell scale, we choose instead to use 

the reach-scale model of Haschenburger (1999) and then apply its estimate of scour probability 

to each redd independently. This approach was developed for gravel-bed channels and may not 

be well-suited for sites where spawning gravels occur mainly in pockets behind obstructions 

(where scour is likely even less predictable).  

Haschenburger (1999) observed the spatial distributions and depths of scour and deposition that 

resulted from a number of high-flow events in several study sites in gravel-bed rivers. She found 

the proportion of a stream reach scoured or filled to a specified depth during an event to follow 

an exponential distribution, the parameter for which (scour-param) varied with site-average 

dimensionless Shields shear stress. Therefore, inSTREAM assumes that the probability of a redd 

being destroyed equals the proportion of the stream reach scouring or filling to depths greater 

than the value of the redd parameter mort-redd-scour-depth (cm). Consequently, the probability 

of a redd not being destroyed (scour-survival) equals the proportion of the stream scouring or 

filling to a depth less than the value of mort-redd-scour-depth. This scour survival probability is 

estimated from the exponential distribution model of Haschenburger (1999); the proportion of 

the stream scouring to less than a given depth is the integral of the exponential distribution 

between zero and the depth: 

𝑠𝑐𝑜𝑢𝑟𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = 1.0 − 𝑒𝑥𝑝(−1 × 𝑠𝑐𝑜𝑢𝑟𝑃𝑎𝑟𝑎𝑚 ×𝑚𝑜𝑟𝑡𝑅𝑒𝑑𝑑𝑆𝑐𝑜𝑢𝑟𝐷𝑒𝑝𝑡ℎ). 

(The value of scour-survival is set to 1.0 if scour-param × mort-redd-scour-depth exceeds 100, 

to prevent the exponential function from producing a variable underflow.) 

Haschenburger modeled scour-param empirically as: 

𝑠𝑐𝑜𝑢𝑟𝑃𝑎𝑟𝑎𝑚 = 3.33 × exp(−1.52 × (𝑠ℎ𝑒𝑎𝑟𝑆𝑡𝑟𝑒𝑠𝑠/0.045)) 

where shear-stress is the peak Shields stress (measured at the reach scale) occurring during the 

high-flow event. Shields stress increases with flow, a relationship represented in inSTREAM (as 

in many sediment transport models) as a power function of flow: 

𝑠ℎ𝑒𝑎𝑟𝑆𝑡𝑟𝑒𝑠𝑠 = 𝑟𝑒𝑎𝑐ℎ𝑆ℎ𝑒𝑎𝑟𝐴 × 𝑓𝑙𝑜𝑤𝑟𝑒𝑎𝑐ℎ𝑆ℎ𝑒𝑎𝑟𝐵 

where reach-shear-A (s/m3) and reach-shear-B (unitless) are reach parameters with highly 

reach-specific values. Methods for estimating reach-shear-A and reach-shear-B are discussed in 

Sect. 23.1. Setting reach-shear-A to 0.0 essentially turns off redd scour mortality by making it 

extremely unlikely at all flows. 

The fish parameter mort-redd-scour-depth can be evaluated as the egg burial depth, the distance 

down from the gravel surface to the top of a redd’s egg pocket. Scour to this depth almost 

certainly flushes eggs out of the redd. Deposition of new material to this distance would double 

the egg pocket’s depth and make egg survival and emergence much less likely. DeVries (1997) 

reviews egg burial depths for stream trout. Values of 5-10 cm are reasonable for small trout using 

relatively small gravel. Zimmer and Power (2006) and Gauthey et al. (2017) observed redd 

depths of 5-15 cm in small Brown Trout. 
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The scour mortality submodel uses the following algorithm for each redd. 

First, the submodel determines whether the current time step is the peak of a high-flow event. A 

flow peak occurs if (a) the current value of flow is the highest of all the flows in the input for 

times between 2.0 d before and 2.0 d after the current value of sim-time, and (b) the value of flow 

has changed since the previous time step. Note that: 

The set of input flows associated with times ± 2.0 d of sim-time are not necessarily the values of 

flow for the time steps within two days (Sect. 8.1). 

The 2.0 d time span used to identify a peak is not a parameter but is easily changed in the model 

code. 

This approach can produce flow peaks during periods of relatively stable, moderate flows, but 

under such conditions the probability of redd scour will be near zero. 

The check that a peak flow cannot equal the flow in the previous time step prevents redd scour 

from being executed repeatedly in consecutive time steps when flow input uses a longer time 

scale than model time steps. For example, daily flow input results in all time steps of each day 

having the same value of flow; but redd scour should be executed only once per value of flow 

input, not on each time step of a day.  

If the current time step is not at a flow peak, then no further steps are executed and there is no 

scour mortality. If it is at a peak, the above equations are used to calculate scour-survival. Then 

scour survival is evaluated as a Bernoulli trial with scour-survival as its parameter. If the trial 

produces a value of false, the redd is assumed scoured and all its eggs die; otherwise, all eggs 

survive. 

(An alternative version of inSTREAM 7 models shear stress at the cell scale. It uses cell-level 

relations between flow and shear stress imported from a hydraulic model, just as the relations 

between flow and depth and velocity are. Then the above equation for scour-survival is applied 

to each cell. This version is available from the authors upon request.) 

9.36 Superimposition redd mortality 
Unlike the other redd mortality submodels, superimposition is not executed repeatedly as part of 

the redd survival schedule. Instead, a redd executes it only when a new redd is created in the 

same cell. The spawner creating the new redd causes each existing redd to execute this submodel 

(Sect. 9.28)63. Because superimposition is not part of the redd survival submodel, this submodel 

determines not the egg survival rate but the number of eggs that die. 

Superimposition typically causes mortality of many but not all eggs in a redd (Essington et al. 

2000, Hendry et al. 2003). For simplicity, inSTREAM assumes that superimposition is accidental 

with no bias for or against spawning over existing redds. Essington et al. (1998) and Gortázar et 

al. (2012) provide evidence that stream trout may intentionally superimpose their redds over 

existing ones, a practice that has the advantages of reducing (a) the work necessary to clean redd 

gravels and (b) the competition that the spawner’s offspring will face (Morbey and Ydenberg 

2003). The formulation could be modified to represent intentional superimposition and the 

complex effects it might have. Such a formulation could be supported by site-specific 

 
63 Superimposition is programmed in the procedure be-superimposed-by. 
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observations, but reasonable general assumptions about intentional superimposition remain 

elusive.  

Superimposition redd mortality is modeled as a function of the area disturbed in creating the new 

redd and the area of spawning gravel available. A redd executes the following steps each time a 

new redd is created in its cell. 

First, the probability Psu of the new redd causing superimposition is calculated as the area of the 

new redd divided by the area of spawning gravel in the cell. The new redd’s area is the value of 

the trout parameter redd-area for the species of the new redd. The area of spawning gravel in the 

cell is simply equal to cell-area × cell-frac-spawn. If Psu is greater than 1.0, it is set to 1.0. 

However, Psu is set to 0.0 if cell-frac-spawn is zero; we assume superimposition is impossible in 

the absence of spawning gravel. 

The probability Psu is then used in a random Bernoulli trial to determine whether superimposition 

occurs. If the trial produces a result of true, the number of eggs that die is drawn from a uniform 

integer distribution with range of possible values from zero to redd-num-eggs.  

Because of how the parameter redd-area is used in this formulation, it is defined as the area a 

spawner excavates in creating a new redd. Our field observations at the Little Jones Creek site 

suggest a redd-area value of 1200 cm2 (the area of a circle with a diameter of 35 cm) for 

relatively small trout. Zimmer and Power (2006) report values around 10,000 cm2 for Brown 

Trout in the range of 26-36 cm. 

9.37 Redd development 
The redd development submodel determines when the eggs in a redd begin to emerge as free-

swimming juveniles64. InSTREAM intentionally ignores the developmental stages between eggs 

and free-swimming juveniles. Development is tracked by the variable redd-frac-developed, 

which is initialized to 0.0 when redds are created, and eggs start turning into fish when redd-

frac-developed reaches 1.0. This submodel determines the daily increase in redd-frac-developed. 

Temperature has long been recognized as the primary driver of salmonid egg development (e.g., 

Embody 1934). Other factors such as dissolved oxygen concentration (as affected by water 

quality or siltation) and disease can affect development but are not considered essential for the 

purposes of inSTREAM. Published models of development rate often quantify degree-days to 

emergence, although a variety of observations indicate that development time is not a constant 

function of degree-days during incubation (e.g., Réalis-Doyelle et al. 2016; Wood and Fraser 

2015).  

Most of the literature relating salmonid egg development to temperature relies on experiments 

that exposed eggs to a constant temperature, but temperature is not constant in inSTREAM. We 

therefore adapt the approach of Van Winkle et al. (1996) of modeling the increase in redd-frac-

developed each time step as a quadratic function of temperature during that step. On each time 

step, the value of redd-frac-developed is increased by a development increment D, where: 

𝐷 = 𝑠𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ × {𝑟𝑒𝑑𝑑𝐷𝑒𝑣𝑒𝑙𝐴 + (𝑟𝑒𝑑𝑑𝐷𝑒𝑣𝑒𝑙𝐵 × 𝑇) + (𝑟𝑒𝑑𝑑𝐷𝑒𝑣𝑒𝑙𝐶 × 𝑇2)}. 

The values of the three redd parameters redd-devel-A, redd-devel-B, and redd-devel-C can be 

estimated from published relations between temperature and incubation time. For example, 

 
64 Redd development is coded in the procedure develop-eggs. 
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results of a typical study that measures incubation time (d) at several temperatures can be used 

by assuming that development increment D is equal to 1.0 divided by observed incubation time. 

The parameter values from Réalis-Doyelle et al. (2016) in Table 22 were estimated in this way, 

using Excel’s Solver to find the parameter values that best fit the data. Réalis-Doyelle et al. 

(2016) published mean time to first feeding for Brown Trout incubated at five temperatures from 

4 to 12°C. The difference between model-predicted and observed incubation times ranged from 1 

day (at 4° and 12°) to 8 days at 8°. The two parameter sets for Brown Trout in Table 22 produce 

substantially different development times, and Réalis-Doyelle et al. (2016) cite other studies of 

incubation time in Brown Trout, some of which produced results quite different from theirs. It 

appears that users may need to compare several studies and determine which produce results 

most compatible with evidence from their application sites. 

In estimating redd development parameters, it is important to use data compatible with 

inSTREAM’s definition of incubation time. This submodel represents the time from egg 

fertilization until new trout are ready to swim and feed, an endpoint typically referred to as “fry 

swim-up” or the time of first feeding. Some studies report other measures of incubation time 

such as the time to hatching or yolk sac absorption, which can be substantially shorter than the 

incubation time we model. 

Negative values of redd-devel-A will produce negative development rates at temperatures near 

0°. We recommend avoidance of such values unless temperatures low enough to cause negative 

development rates will not be simulated commonly. 

Table 22 provides parameter values for several species. Parameter values of Van Winkle et al. 

(1996) for Rainbow Trout, used in previous versions of inSTREAM, had a negative value of 

redd-devel-A and therefore produced negative rates at very low temperatures. The values in 

Table 22 produce the same development rates as those of Van Winkle et al. (1996) at 

temperatures > 3°, and positive rates at all positive temperatures. 

Railsback and Harvey (2001) found the Rainbow Trout parameters in this table reasonable for a 

Cutthroat Trout population in coastal California. 

Table 22: Parameter values for redd development 

Species Source redd-devel-A 

(unitless) 

redd-devel-B (°C-1) redd-devel-C (°C-2) 

Rainbow Trout 

(spring spawning) 

Van Winkle et al. 

(1996) 

0.0 0.00126 0.0000372 

Brown Trout (fall 

spawning) 

Van Winkle et al. 

(1996) 

0.00313 0.0000307 0.0000934 

Brown Trout (fall 

spawning, 

European) 

Réalis-Doyelle et 

al. (2016) 

0.00165 0.00166 0.0000275 

 

9.38 Redd emergence 
This submodel represents the creation of new trout from redds; trout biologists refer to the 

“emergence” of new swim-up fry from redds. The model has two components: emergence timing 
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and creation of new trout. This submodel is executed once per day (not each time step) by each 

redd that has a value of redd-frac-developed of 1.0 or higher65. 

The emergence timing element determines when each new trout is created. Emergence begins on 

the day when redd-frac-developed reaches 1.0, then the new fish emerge over a period of several 

days. Causing emergence to occur over several days reproduces observed natural variation in 

emergence timing and can potentially have strong effects on survival of newly emerged trout. 

These fish compete with each other for food as soon as they emerge. If all emerged on the same 

day, without time for some to disperse away from the redd, competition would probably be 

overestimated.  

InSTREAM 7 controls the rate at which new trout emerge from a redd in two ways. First, this 

submodel is executed only on the first time step of the daytime light phase; this keeps the rate of 

emergence independent of the number or length of time steps. Second, as a simple way to spread 

emergence over several days, inSTREAM assumes that 10% of a redd’s eggs (rounded up to the 

next integer) emerge on the first day of emergence; 20% of the redd’s remaining eggs emerge on 

the next day; 30% of the remaining eggs emerge on the third day; etc., until 100% of remaining 

eggs emerge on the 10th day. For example, if a redd contains 105 eggs on the day that 

development is complete, the number of new trout emerging NE that day is 11, with 94 eggs 

remaining in the redd. On the next day (assuming no egg mortality occurs), NE is 19 (20% of 94, 

rounded up) with 75 eggs (94-19) remaining. On the third day of emergence, NE  is 23 (30% of 

75, rounded up).  

This algorithm is implemented using the redd variable redd-emerge-days (d), which records the 

number of days the redd has been producing new trout. The value of redd-emerge-days is 

initialized to 0 when the redd is created and incremented by 1 on each day when it creates new 

trout. 

As emergence proceeds, the eggs remaining in a redd remain susceptible to redd mortality. On 

the day when the number of remaining eggs reaches zero (typically, when redd-emerge-days is 

10), the final step in this submodel is to remove the redd from the model. 

One new trout is created for each egg that emerges, unless new trout are represented as 

superindividuals. Superindividuals are created if the value of trout parameter trout-superind-

max-rep exceeds 1. In that case, the number of new trout created is NE divided by trout-

superind-max-rep, rounded up to the next integer.  

The new trout have their state variables initialized using these methods: 

trout-species is set to the species of the redd creating the trout. 

trout-sex is assigned as “male” or “female” randomly, with equal probability. (Morán et al. 2016 

show that this assumption is surprisingly uncertain: sex ratios of newly emerged trout can be 

highly variable.) 

trout-age is set to 0 years. 

 
65 This submodel is implemented in the procedure redd-emergence. Initialization of new trout is by the procedure 

initialize-trout-with. 



 

143 

 

trout-length is drawn from a random triangular distribution specified by the trout parameters 

trout-emerge-length-min, trout-emerge-length-mode, and trout-emerge-length-max. 

trout-condition is set to 1.0 and trout-weight is set to the weight of a fish with length of trout-

length and condition 1.0, using the method in Sect. 9.20. 

trout-cell is set to the redd’s cell. 

trout-superind-rep is set to trout-superind-max-rep, except for the last trout created, which has 

trout-superind-rep set to the remainder of NE / trout-superind-max-rep. This adjustment keeps 

the total number of trout represented by the superindividuals equal to NE. 

Other trout variables are initialized as they are for trout created at the start of a simulation (Sect. 

7.3). 

InSTREAM imposes variation among individuals in length at emergence because habitat 

selection (and, consequently, growth and survival) is modeled using a length-based hierarchy. 

Elliott (1994) found only slight length variation among trout emerging from the same redd, but 

that variation gave larger fish an advantage in dominance likely to persist and grow over time 

because competition among newly emerged trout can be intense (and this intense competition 

occurs in inSTREAM; Railsback et al. 2002). InSTREAM neglects any effect of spawner size on 

initial offspring size; such effects have been observed in some salmonid populations and may be 

important for modeling problems that include evolution (e.g., Ayllón et al. 2016, 2019a, b). 

However, spawner effects on offspring size do not appear important for typical applications of 

inSTREAM. 

The parameters for the length distribution of newly emerged trout can be estimated from the 

literature or hatchery data. June (1981) measured lengths of newly emerged coastal Cutthroat 

Trout in Washington found in a downstream trap. A few of these fry had lengths between 2.4 and 

2.7 cm, but most were between 2.7 and 3.0 cm. Elliott (1994) observed length at emergence for 

Brown Trout at several sites, producing a mean length of 2.8 cm with a standard deviation of 0.2 

cm. Therefore, values of 2.6, 2.8, and 3.0 cm seem reasonable for trout-emerge-length-min, 

trout-emerge-length-mode, and trout-emerge-length-max. 

9.39 Superindividual separation 
This submodel turns a superindividual into individual trout. A superindividual executes it when 

the growth submodel causes the superindividual to reach a specified length (Sect. 9.20)66. 

The number of new trout created is the superindividual’s value of trout-superind-rep. For each 

new trout, all state variables are set to the values of the superindividual, except for trout-

superind-rep, which is set to 1. The superindividual is then removed from the model.  

(The individual trout created from a superindividual are all assigned the same length; their 

lengths subsequently diverge as a consequence of their luck in the sorting process that 

determines the order in which trout execute their habitat and activity selection action each time 

step; Sect. 5.) 

 
66 The superindividual separation submodel is coded in the procedure separate-superindividual. 
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Part III: Software Guide 

10 Introduction to the InSTREAM 7 Software 

10.1 Software goals and platform 
Since the beginning of the inSTREAM development program, we recognized the importance of 

software design and implementation for making complex individual-based models (IBMs) usable 

and credible. We continue to pursue the software goals stated in Sect. 18.4 of Railsback et al. 

(2009), which are that inSTREAM’s software should: 

• Allow changes in model formulation to be implemented easily and without a high chance 

of introducing errors. Changes in the model are inevitable as it is applied to different 

problems and as we learn more about mechanisms in the model. 

• Be thoroughly tested and documented. Undiscovered mistakes are extremely costly, and 

thorough documentation is essential for the model to become widely used and accepted. 

• Promote documentation of changes and version control, so software documentation 

remains current as the model evolves. 

• Provide the graphical and file outputs necessary to understand and develop belief in 

results. 

• Provide tools that make simulation experiments easy to set up and execute. 

InSTREAM 7 differs from all previous versions of inSTREAM in being implemented in the 

NetLogo software platform. Previous versions were implemented using Swarm, which was the 

best platform available when the inSTREAM program started in 1999. In the meantime, Swarm 

is no longer maintained and NetLogo (Wilensky 1999) has developed into a powerful and 

standard platform for IBMs in many fields (Railsback et al. 2017; Railsback and Grimm 2019). 

The primary advantages of NetLogo are that it: 

• Provides built-in structures (grid cells, mobile individuals) and hundreds of powerful 

programming commands (primitives) specifically for IBMs; these greatly reduce the 

amount of code needed to implement a model and make it much easier to read and 

modify code. Many of NetLogo’s primitives use sophisticated algorithms to improve 

execution speed. 

• Provides a variety of graphical interfaces and controls. 

• Includes a powerful experiment manager (called BehaviorSpace). 

• Is professionally maintained and documented, and has a large and active user community.  

• Is free, open-source, easy to install, and available for all major operating systems. 

10.2 Software license 
Like all previous versions, the inSTREAM 7 software is free software distributed under the GNU 

General Public License as published by the Free Software Foundation. This means that users are 

free to use and modify the software, but they must make their source code available to anyone 

they distribute the software to and cannot patent the software or make it proprietary. The full 

GNU license is distributed with the software and is also available from www.gnu.org/licenses/. 

The inSTREAM software is copyrighted. 
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10.3 Testing, maintenance, and evolution 
We encourage users to check the inSTREAM web site (identified in Sect. 1.1) for updates as the 

model and its documentation evolve. Updates and new releases of inSTREAM are likely to result 

from changes in NetLogo, implementation of new features and correction of mistakes, and 

adaptation of the model to address new problems.  

We test the inSTREAM software thoroughly before each release and make an archive of 

completed and documented software tests available from the web site. Code testing is normally 

done by temporarily activating code in the inSTREAM software that provides detailed output 

from a particular submodel or procedure, and then comparing this output against an independent 

implementation of the submodel in Excel. We then comment and archive the Excel files to 

document the tests. About 22 such test files were available for the first release of inSTREAM 7. 

The code to produce each test output file either remains in the inSTREAM 7 software 

(commented out) or is in a separate code file available at the inSTREAM 7 web site. 

10.4 Overview and getting started 
We recommend the following steps for getting started with inSTREAM 7 and applying it to new 

sites. 

1. Install NetLogo, following guidance in Sect. 11.2. Become familiar with the NetLogo 

platform, especially its graphical interface (Sect. 11.3). 

2. Understand the concept of an inSTREAM “project” (Sect. 11.1) and install the 

inSTREAM 7 software (Sect. 11.2). 

3. Try the software using the example project distributed with inSTREAM, learning to 

control simulations (Sect. 11.3) and understand the output files (Sect. 12). 

4. Apply the model to a new site by preparing the input files (Sect. 13) and selecting 

parameter values to control the simulation and represent site-specific conditions (Sect. 

14). 

5. Conduct the kinds of simulation analyses discussed in sects. 18-25, using the 

BehaviorSpace tool (Sect. 15). 

6. When problems arise, consult the troubleshooting guide at Sect. 17. 

11 Software Installation and Execution 

11.1 The project concept 
In this document we refer to an inSTREAM 7 “project” as the collection of software and files 

needed to run the model. While this project concept is not enforced by the software, it is a 

convenient way to think about and manage the software. A “project” is a directory or directory 

tree containing all the files needed to run inSTREAM 7 for a particular set of scenarios at a 

particular site (Figure 41); when the model is run, its output files become part of the project. 
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Figure 41. Example inSTREAM 7 project. In this example, all input files except the GIS 

shapefile are in the main project directory. Alternatively, the other input files (those with .csv 

extensions) could be in their own subdirectory. The project contains its own customized copy of 

the inSTREAM 7 software and parameter file. 

A project must include the following files; input file formats are explained in Sect. 13. 

• The inSTREAM 7 NetLogo file, which includes its code. This file always has a file 

extension of .nlogo and typically is named something like inSTREAM7.0.2-

MyProject.nlogo. You will very likely make changes to this file for each project, so it is 

wise to rename it to include its project name. The NetLogo file will always be in the main 

project directory, not in a subdirectory. 

• A parameter file, which is a text file containing the NetLogo code that sets the values of 

all the model parameters (explained at Sect. 14). This file always has a file extension of 

.nls (the extension for secondary NetLogo code files) and typically is named something 

like parameters-MyProject.nls. Again, you will edit this file to make it specific to your 

project, so it is smart to give it an identifying file name. 

• A GIS “shapefile” in ESRI format, containing cell input. A shapefile is actually a set of 

several files, so these are normally placed in a subdirectory under the main project 

directory. 

• The time-series input, initial population, and hydraulics input files. These can be placed 

either in the main project directory or in a subdirectory. 

• The file License.txt is normally distributed with inSTREAM 7; it contains the software 

license text and is not needed for model use. 

The parameter file provides the names of the shapefile and all input files, including the 

subdirectory that they are (optionally; Sect. 13.1) in. When the model executes, all output files 

are written into the same directory as the NetLogo file, the main project directory. 

All project files—except output files—are typically small, so we recommend creating new 

projects for each simulation experiment instead of trying to keep input and results from several 

simulations in the same directory. Creating a new project simply requires copying an existing 

project into a new directory and re-naming any files altered for the new project. 

11.2 Installing NetLogo and inSTREAM 7 
NetLogo must be installed on the computer used to run inSTREAM 7. NetLogo is professionally 

packaged and readily installed from its download site: http://ccl.northwestern.edu/netlogo/. 
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Currently, inSTREAM 7 works with version 6.2 (released in late 2020) and will likely be 

compatible with future NetLogo releases. However, inSTREAM 7 will not work without 

modification for earlier releases of NetLogo because of changes in how the “time extension”—

the code inSTREAM uses to handle dates and times—was packaged. Starting with version 6.2, 

this extension is included with the standard NetLogo distribution. 

Installing inSTREAM 7 is simply a matter of obtaining an existing project directory. We 

distribute the model from our web site (Sect. 1.1) in the form of a zip-archived example project 

that looks like Figure 41. Simply download the zip file and extract it. 

The troubleshooting guide (Sect. 17) provides help with a number of issues likely to arise during 

installation and early use of inSTREAM; especially, see its entry about memory availability and 

increasing the memory available to NetLogo. 

11.3 Becoming familiar with NetLogo 
Using inSTREAM 7 requires familiarity with NetLogo’s basic concepts and interfaces. NetLogo 

provides extensive introductory learning materials that we do not attempt to reproduce here. 

Railsback and Grimm (2019) and Wilensky and Rand (2015) provide more complete 

introductions to modeling with NetLogo. 

We strongly suggest that new users open NetLogo (from the normal Start menu or by double-

clicking on the inSTREAM 7 NetLogo file) and use the introductory tutorials and guides 

available in its User Manual. In particular we recommend: 

• From the Help menu, select the User Manual, which opens in a web browser. 

• The User Manual menu appears on the left side of the browser window. Select Tutorial 

#1: Models and work through the tutorial. 

• At least briefly review the other User Manual content. This content can be used as needed 

to understand specific parts of the model interface and code. 

11.4 Running and observing simulations 
In this section we describe the specific tools provided for running and observing inSTREAM 7 

simulations. Many of these are illustrated in Figure 42, which shows the user interface that opens 

when you either double-click on the inSTREAM 7 NetLogo file or start NetLogo and use its File 

menu to select the inSTREAM 7 NetLogo file. 
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Figure 42. Example inSTREAM 7 interface. 

11.4.1 NetLogo’s tabs 

NetLogo provides three tabs that you will move among. The Interface tab (shown in Figure 42) 

provides the graphical interface and controls normally used to run and observe the model.  

The Info tab simply provides text information about the model. This information normally 

specifies the version of inSTREAM 7 implemented in the NetLogo file, and provides a log of 

any minor changes made to it. You can add your own notes to the Info tab (click “edit” to toggle 

its write mode) to keep track of your own changes and differences among projects. 

The Code tab contains the model code in NetLogo’s own programming language. Normal use 

does not require working in the Code tab. However, when the code detects an error (e.g., missing 

or incorrect input) it will display an error message and take you to the Code tab and indicate 

which code was executing when the error occurred. Normally the error message itself will be 

sufficient to let you fix the problem without understanding the code, so you can simply click 

back to the Interface tab. 

11.4.2 Key interface buttons 

As you learned from the NetLogo tutorial, there are two buttons that appear on the interface of 

any NetLogo model: setup and go. Clicking the setup button executes the procedure that 

initializes the model, building the simulated stream habitat and creating the initial trout 

population.  
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The go button then executes the model schedule (defined in Sect. 5): it begins simulations and 

continues them until the model’s stop date is reached. However, clicking go a second time 

pauses the simulation at the end of the current time step. The go button can be used as a toggle to 

stop and re-start execution. 

The step button also executes the model’s schedule, but only once: it lets the user run one time 

step at a time. 

11.4.3 Other buttons 

There are typically several additional buttons on the inSTREAM interface. (NetLogo makes it 

easy to add such controls, so the interface must be expected to vary among and within model 

versions.) Four other buttons illustrated in Figure 42 control how stream habitat is displayed 

during executions. Clicking the shade-by-depth button tells inSTREAM to color each habitat 

cell by its depth, and the shade-by-vel button shades cells by velocity. (Shading is updated only 

when the flow changes, which may take several time steps.) The shade-by-light button switches 

shading to show the light intensity that fish experience in each cell. Stop-shading turns shading 

off, which increases execution speed. 

The show-GIS-properties button simply shows, in the Command Center, the names of all the 

“properties” of the cell polygons in the GIS shapefile. It also displays a few example values of 

each property, from randomly selected cells. This button is useful for setting the GIS property 

name parameters (Sect. 14.1.2). 

11.4.4 File switches 

The model interface also contains switches that turn different kinds of file output (described in 

Sect. 12) off and on. Output files can be turned off and on during a simulation, and can even be 

turned on for the first time partway through a simulation. 

11.4.5 Inputs 

An “input” is an interface element that lets the user see and change the value of a model 

parameter. InSTREAM typically has only one input, labeled random-number-seed. This input 

is how the user sets the value of the random-number-seed parameter explained in Sect. 6.9. 

11.4.6 View and inspectors 

NetLogo’s “View” displays the simulated stream and trout (Figure 43). As the NetLogo tutorial 

indicates, you can right-click on the View and open “inspectors” to see (and change) the 

variables of objects in the model. Right-clicking opens a menu that includes options to “inspect” 

any object near where you clicked. These objects (which, except for patches, are defined in Sect. 

4.1) can include: 

• A “patch”: Patches are NetLogo’s built-in square grid cells, which are very small in most 

inSTREAM 7 applications; there are several patches per cell. Patches are used by 

inSTREAM only for display and therefore do not appear in the model description. They 

have variables for habitat characteristics that can be displayed via patch colors: depth, 

velocity, and light (irradiance); and for which cell and reach the patch belongs to. 

• A cell: Cells represent inSTREAM’s polygonal habitat cells. The view displays cell 

boundaries as white lines, but the cell itself is depicted as a small dot at the polygon’s 
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centroid. (These dots are intentionally small and may be very difficult to see; they are not 

visible in Figure 43). 

• A trout: The simulated trout appear as triangle-like symbols (NetLogo’s default shape) 

that have a color representing their species, and length proportional to the trout’s 

simulated length. Trout are displayed at a random location within the cell they occupy. 

• A redd: Redds appear as a “target” symbol of concentric circles, also colored by species.  

 

Figure 43. NetLogo’s View during a simulation. White boundaries delineate cells. Here, cells are 

shaded by water depth. Trout appear as triangle-like shapes. There are several redds present, 

especially near the southwest end of the reach. 

11.4.7 View settings 

As the NetLogo tutorial indicates, clicking on the “Settings” button near the NetLogo menu 

produces a menu of View settings. For inSTREAM 7, avoid changing any of these settings, with 

one exception. Changing the “patch size” changes the size of the View on your display without 

affecting model results. Other settings are controlled by the inSTREAM code and should not be 

altered here; changing some settings (especially, “world wraps”, which must be unchecked) will 

cause significant errors. 

NetLogo also provides a speed controller near the top center of the Interface tab. For most 

NetLogo models, increasing the speed with this controller makes the model execute faster by 

reducing how frequently the View’s graphical display is updated. However, inSTREAM’s 

execution time is overwhelmingly dominated by computations, not graphics updates, and the 

speed controller has negligible effect. 

The “view updates” checkbox should be checked (otherwise, the View will not be updated each 

time step), along with the option to update the view “on ticks” (once per time step) instead of 

“continuous”. (The “continuous” option updates the view 30 times per second, which can let you 

see individual fish move among cells as they select habitat. This can be fun but is not very 

informative and slows execution considerably.) 



 

151 

 

11.5 NetLogo Export commands 
In NetLogo’s File menu is a submenu labeled “Export”. This submenu provides tools that save 

parts of the model to files: you can save plots (the X-Y coordinates of all points currently on a 

plot), graphical images of the View or the whole interface, and even the model code (in HTML 

format that includes the text colors).  

This menu also includes a command “Export world” that saves the complete current state of a 

model so it can be imported (via “Import world”) and re-started later. This capability to save the 

model’s state (“serialize” the model, in computer science terminology) could be very useful for 

inSTREAM users, but unfortunately it does not work for inSTREAM (as of NetLogo version 

6.2). The export capability has not been implemented in NetLogo’s “Time extension” that 

inSTREAM 7 depends on. 

12 Output Files 

12.1 General information on file output 
InSTREAM 7 can produce many kinds of output file that are useful for typical analyses. 

However, our experience indicates that users must be able to control how much output they 

produce, and the types; otherwise, the model can produce far more output than we can 

understand or even store and analyze. Therefore, inSTREAM has the following file output 

features. 

• All output files can be turned on or off easily, using switches described below. The main 

output files can even be turned on and off during a simulation. 

• Users also control how often information is written to the population summary output 

files (and the individual fish and cell output files), via the file output frequency 

parameters explained in Sect. 14.1.1. These parameters can be set to produce output 

every time step or only periodically (e.g., daily, biweekly, monthly). 

• InSTREAM 7 never overwrites output files and instead produces a unique name for each 

output file each time the model is executed. The name of each output file is a 

combination of the type of output, (when relevant) the BehaviorSpace run number (Sect. 

15), and the date and time the model run started (from the computer clock). For example, 

the output file name BriefPopOut-02-45-12.034_PM_27-May-2020.csv is the brief 

population output file for a model run that started at 2:45:12 pm on 27 May 2020, with 

BehaviorSpace not used. (The file name would include r1, r2, r3, etc. for runs executed 

by BehaviorSpace.)  

• The names of all files produced by one model run are the same except for the initial 

characters designating the type of output. Hence, it is easy to distinguish the output from 

different runs. 

• All output files are written in CSV format for easy import into analysis software such as 

Excel or R. 

• If you open an output file in Excel (or other software that locks files when editing them) 

as a model is running and writing to that file, it will cause an error. One way to look at an 

output file before a simulation finishes is simply to copy it and paste it into another 

directory (e.g., onto the desktop) and look at the copy. A second way is to pause the 

model run by clicking the “go” button, look at the file, close it, and re-start the simulation 



 

152 

 

by clicking go again. (If you do open an output file while the model is running and cause 

a run-time error, you can simply close the error dialog and hit the go button again to re-

start the simulation.) 

• The format of output date and time values is easily changed via simple code edits. Search 

the code for statements starting set formatted-sim-time ... and change the format code 

at the end of the statement67. For example, if you prefer dates in day-month-year format 

instead of inSTREAM’s default month/day/year format, change the format code from 

"M/d/yyyy HH:mm" to "d-M-yyyy HH:mm". Do not change the date and time format 

elsewhere in the code, and be very careful with the format codes: never use YYYY 

instead of yyyy, and be aware that seemingly small differences (upper vs. lower case, 

one character vs. two) can cause major errors that are not easy to identify. Check the 

NetLogo time extension’s documentation for information on format codes. 

Several categories of file output can be produced. The main output files are controlled via the 

switches on the model interface (Figure 42) and described in Sect. 12.2. These files produce the 

kind of summary results used in typical analyses.  

Debugging output files (Sect. 12.3) provide details about specific submodels. They are designed 

for use only when needed to understand why the model produces a specific result (e.g., why the 

model trout never spawn), and sometimes produce extreme volumes of output. Debugging output 

files are turned off and on by model control parameters explained in Sect. 14. 

Graphical output files can be produced in two ways. If the model control parameter write-

frames? is set to true, the model produces a graphics image file (PNG format) of the model 

interface each time step; these image files can be used to produce a “movie” (e.g., in GIF format) 

of the model run. Producing movies from this output requires additional software and is not 

otherwise addressed in this document. A very simple code modification produces graphical 

output of only the View (the display of cells and trout) instead of the whole Interface. In the 

Code tab, search for the command export-interface (in the procedure update-output) and 

change it to export-view.  

Images of the NetLogo interface can also be created manually via the “export” commands 

available under the File menu. These commands allow users (usually after pausing the simulation 

via the go button) to write individual image files of the interface or its components. The export 

capabilities are explained in the Interface Guide section of the NetLogo User Manual. 

(The inSTREAM 7 software also includes code to write numerous output files designed 

specifically for testing the software, discussed in Sect. 10.3. These test output files are not 

addressed here because they are not useful for typical users.) 

The BehaviorSpace simulation experiment tool described in Sect. 15 (see also Sect. 16.6) 

produces its own output instead of, or in addition to, the files described here. 

 
67 There is one of these set formatted-sim-time statements in the procedure set-up-time and two in 

update-time-and-habitat. 
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12.2 Main output files 
Here we describe the main output files. These files are easily modified; standard output from 

future versions of inSTREAM may not exactly match this description. These files include a 

column containing the BehaviorSpace run number (Sect. 15) so output be associated with the 

parameter values used in a BehaviorSpace experiment; the run number is set to 0 when 

BehaviorSpace is not used. 

The brief population output file is controlled by the interface switch labeled brief-pop-output. 

When this switch is on, the file reports the status of the simulated trout population at time 

intervals specified by the output frequency control parameters (Sect. 14.1.1). It also 

automatically produces output for all census dates, which are also specified by the output 

frequency control parameters. The file reports trout abundance, mean length, mean weight, mean 

condition, and fraction of trout using each of the three activities: drift feeding, search feeding, 

and hiding. These results are categorized by habitat reach, species, and age class. (Age classes 

are also easily defined via parameters; Sect. 14.1.5.) The file also reports the current light phase 

(dawn, day, dusk, night) and whether it is a census date. 

The detailed population output file, controlled by the switch detailed-pop-output, differs 

from the brief population output file only by further breaking results out by activity: it reports the 

number and characteristics of trout that are drift feeding, search feeding, and hiding. It therefore 

is three times longer than the brief population output file. 

The redd summary output file is controlled by the redd-output? switch. It writes one line of 

output summarizing the fate of each redd. The output line for a redd is written on the time step 

when the redd is emptied of eggs and removed from the model, so the file never contains 

information on redds that still exist. The file reports each redd’s species, reach name and cell 

identification number, dates created and emptied, initial number of eggs, number of eggs that 

died of each mortality source, and number of eggs hatched into new trout. 

The fish events and redd events output files are controlled by the events-output? switch. 

These two files report when specific events happen to individual trout and redds; they report all 

such events and are not affected by the output frequency control parameters. The fish events 

output contains one line for each time a trout experiences an event such as being initialized at the 

start of a run, emerging from a redd, dying, and spawning. This output line reports the trout’s 

unique identification number (so the events happening to a particular individual can be tracked), 

and the event type (e.g., the mortality source causing the fish to die). The output also includes the 

date and time, the reach and cell where the event occurred, and the trout’s characteristics such as 

age, length, weight, and condition. For redds, the events reported include being created, losing 

eggs to the various egg mortality sources, and when emergence of new trout starts and ends. 

12.3 Debugging output files 
We recommend using these output files (Table 23) only when necessary to understand or test 

specific parts of the model or to obtain more evidence for why specific results were produced. 

The first two of these files, individual fish and cell output, are updated at time intervals specified 

by the output frequency control parameters (Sect. 14.1.1). The others are always updated every 

time step. 



 

154 

 

The parameter frac-trout-to-output (a number between 0.0 and 1.0) controls the completeness of 

the individual fish output that allows analysis of growth and behavior of individuals over time. A 

frac-trout-to-output value of 1.0 produces output for every trout. For frac-trout-to-output < 1.0, 

each trout when created (via initialization, or during a simulation) has a probability equal to frac-

trout-to-output of being tracked over its entire life. High values of frac-trout-to-output can yield 

very large individual fish output files, but low values (e.g., 0.1) may not provide enough data in 

simulations of populations with low survival to adulthood. 

Table 23. Debugging output file information. 

Output 

switch 

parameter 

Entities reported Output variables Notes 

individual-
fish-
output? 

Each of a 

randomly selected 

fraction of the 

trout population; 

trout are selected 

when created, so 

individuals can be 

followed over 

time. 

Location (reach, cell), 

species, age, length, 

weight, condition, 

superindividual 

representation, activity, 

and current growth rate 

and survival probability. 

Does not produce output on the 

first time step. The parameter 

frac-trout-to-output (a number 

between 0.0 and 1.0) sets the 

percentage of trout reported. 

Use this file to understand what 

happens to individuals. Growth 

and survival are for the current 

time step (g growth; 

probability of surviving the 

time step), not daily values. 

cell-
output? 

Cells: one line per 

cell. 

All cell variables, plus 

the number of trout of 

each age class 

occupying the cell. 

Cells are not reported if dry at 

the current flow. 

debug-
growth? 

Trout and cell All variables of a trout 

and the cell it is 

considering that affect 

trout growth, and the 

growth rate the trout 

would experience in the 

cell. 

Produces extremely large files 

because it reports a line each 

time each trout calculates 

growth for a cell; the code for 

this file is normally 

commented out. 

debug-
survival? 

Trout Trout characteristics 

(species, age, length, 

etc.), and the daily 

probability of surviving 

each mortality source. 

Results are for the cell and 

activity selected by the trout on 

the current time step. 
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debug-redd-
survival? 

Redds Redd species and reach; 

habitat variables 

affecting redd mortality 

(temperature, flow, 

depth); and daily 

survival probabilities 

for each redd mortality 

source. 

Results are for the cell 

occupied by the redd. 

debug-
survival-
logistics? 

Trout, redds Values of the logistic 

functions used to model 

trout survival. 

This output includes a table of 

logistic function output for 

inputs ranging from 0 to 50, 

produced only once at model 

initialization. It is useful only 

for testing and observing the 

logistic functions. 

debug-cell-
variables? 

Cells All static cell variables, 

including the depth and 

velocity lookup tables. 

The output is produced only 

once, at model initialization. 

debug-cell-
hydraulics? 

Cells The depth and velocity 

vs. flow lookup tables. 

The output is produced only 

once, at model initialization. 

debug-cell-
resources? 

Cells Cell variables 

representing resources 

depleted by trout: drift 

and search food, hiding 

places, velocity shelter. 

Output is produced when 

variables are re-set at the start 

of a time step and each time a 

trout occupies the cell and 

depletes resources. 

debug-
spawning-
readiness? 

Trout All trout and habitat 

variables affecting 

whether a trout is ready 

to spawn on the current 

time step; whether the 

trout spawns; and (if 

not) the criterion that 

was not met. 

Output is produced once per 

female trout per day. 

 

13 Input Files 
InSTREAM 7 requires four kinds of site-specific input files. The first three of these types specify 

the model’s initial conditions (Sect. 7) and static habitat variables (Sect. 4.1), and the fourth 

provides the time-series inputs that drive habitat dynamics (Sect. 8.1). This section describes the 

file types and formats, providing first general information and then the details of each file type. 
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Information and recommendations on developing the input for a study site are provided in sects. 

18 through 22. 

The troubleshooting guide of Sect. 17 lists many of the problems that arise when assembling 

input, with solutions. Users must expect to encounter many error statements, but most are due to 

common, easily fixed problems. 

13.1 Common characteristics of input files 
Input files, including the parameter file, can be in the same directory as the project’s NetLogo 

file, or in a subdirectory. When files are not in the same directory as the NetLogo file, their file 

names must include the path to them. This path is relative to the directory containing the 

NetLogo file (not the parameter file). For example, if the main project directory that contains the 

NetLogo file is C:\Users\...\InSTREAM-Work\Flow-Experiment-Project and the parameter 

file and input files are in the subdirectory C:\Users\...\InSTREAM-Work\Flow-Experiment-

Project\Input, then the parameter file name must be designated in the inSTREAM NetLogo 

code as: 

__includes [ "Input/parameters-Flow-Experiment.nls" ] 

and the parameter file must include Input/ as the first part of each input file’s name. If the GIS 

shapefile is in its own subdirectory of the input directory, then its name must be specified as 

"Input/Shapefile/Project.shp". 

InSTREAM treats file names as case-insensitive: it does not matter if an input file is named 

VELOCITY_Input.csv or Velocity_Input.csv. However, text variables contained in these files 

are case-sensitive. Such variables include cell identifier codes and reach names; if the GIS file 

contains cells named “ReachA-Cell001”, etc., and the hydraulic input file names cells as 

“REACHA-CELL001”, inSTREAM will not recognize these as the same cells. 

Except for the GIS shapefile, all the input files for inSTREAM use CSV format and are designed 

to be created and edited in spreadsheet software. This approach offers convenience, but users 

need to be aware that Excel frequently adds extra blank cells and lines when saving files in CSV 

format. When inSTREAM 7 raises an error when trying to read a CSV input file, the problem 

can often be fixed by opening the file in a text editor (e.g., Notepad++) instead of Excel and 

finding and removing extra commas. In a text editor, first go to the end of the file and delete any 

lines containing only commas. Then use the “find and replace” function to remove any commas 

with nothing between them (“,,,”) at the ends of lines. (However, extra commas at the end of 

the file’s header lines are harmless.) 

When saving an input file from Excel, select Excel’s “CSV (Comma delimited)” file type. Other 

CSV formats offered by Excel (e.g., “CSV-UTF-8”; see the Project’s note about UTF-8 in Sect. 

17) may not be readable by inSTREAM. 

13.2 GIS shapefile and background image file 
The shapefile (which is actually a subdirectory of about 8 files of different types) contains the 

spatial information about habitat cells: their location, shape, size, and characteristics. The name 

of the shapefile is provided via the model parameter GIS-file-name (Sect. 14.1.2). 
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We have found that GIS analysis is almost always necessary to prepare habitat information, and 

NetLogo’s GIS extension makes it easy to import the information directly from a shapefile into 

the trout model. Additional information on how NetLogo uses GIS input is in its User Manual 

section on the GIS extension. 

The GIS input to inSTREAM must have these characteristics: 

• The format is an ESRI shapefile containing a vector dataset.  

• Each “feature” of the dataset is a polygon representing one habitat cell.  

• Distance units are meters. 

• The projection is one of those supported by the GIS extension; these are listed in the User 

Manual. (We typically use shapefiles saved by the GIS in the Lambert_Conformal_Conic 

projection, while the GIS extension accepts only the Lambert_Conformal_Conic_2SP 

projection. Doing so requires editing the shapefile’s .prj file to change 

"Lambert_Conformal_Conic" to "Lambert_Conformal_Conic_2SP".) 

• Each polygon feature must have properties for each of the cell variables listed in Table 

24. (Any other properties are ignored.)  

InSTREAM 7 can represent multiple reaches; different study sites can be simulated at once as if 

they were connected (Sect. 4.1.2). Reaches must be assembled in GIS and all included in the 

same shapefile (Figure 44), even though each reach has its own flow, temperature, and turbidity 

input. The GIS input for each reach can be assembled in separate shapefiles and then moved into 

a single shapefile that retains the geometry of each reach while the distance between reaches 

becomes artificial.  

The distance between any two cells is calculated directly from the shapefile, so how multiple 

reaches are assembled in it can affect results. Figure 44 illustrates three reaches placed very close 

to each other, so even very small fish could move among reaches (Sect. 9.13.1). Placing the 

reaches further apart would limit movement among them to larger individuals. 

 

 

Figure 44. The View of an inSTREAM 7 application with three reaches. The arrows indicate 

where separate study sites were joined in GIS to produce one shapefile of cell polygons 

representing the reaches as if they were adjacent. The actual study sites are several km apart. 

(This input set has 5358 cells and represents about 3000 m of a large river.) 
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As explained in Sect. 14.1.2, the shapefile can use any names for the properties used by 

inSTREAM; the parameters listed in the second column of Table 24 are used to tell inSTREAM 

which shapefile properties contain which cell variables. 

To avoid unnecessary computations, the inSTREAM code automatically deletes any cells that 

would always be dry. It checks the depth input file (Sect. 13.3) and deletes any cell that has zero 

depth at all flows in that file. 

InSTREAM 7 has an option to provide a background image—typically, an aerial photograph of 

the study site—that is displayed behind the other graphics in the View (Figure 45). This image is 

provided as an image file (Sect. 14.1.2) in BMP, JPG, GIF, or PNG format. The name of the file 

is provided via the model parameter background-image-file. If no image is to be used, simply 

set this parameter to “None”. The image’s center is placed at the center of the View and the image 

stretched to match the extent of the GIS shapefile. Therefore, the background image should have 

exactly the same spatial extent as the shapefile; normally it is prepared in GIS. (The background 

image is displayed using NetLogo’s import-drawing primitive; the NetLogo documentation for 

that command provides details on image formats.)  
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Table 24. Cell variables required as polygon properties in the shapefile. The second column is the 

inSTREAM parameter that must contain the property name used in the shapefile. Cell variables 

are fully defined in Sect. 4.1.3. 

Property Parameter 

containing 

property name 

Value and units 

Cell 

identification 

code 

GIS-property-
for-cell-ID 

A unique text code used as the cell’s identifier. 

The same code must be used in the hydraulic 

input files. Multiple cells cannot have the same 

value of this variable even if in different reaches. 

Typically the code combines the reach name with 

a cell number, e.g., “UpperReach-Cell1093”. This 

property must be in text, not number, format.  

Reach name GIS-property-
for-reach-name The name (text) of the cell’s reach. The reach 

name must exactly match that used in the habitat 

parameters (Sect. 14). 

Area GIS-property-
for-cell-area The cell’s area (m2; converted by inSTREAM to 

cm2). 

Distance to 

escape cover 

GIS-property-
for-cell-dist-
escape 

A characteristic distance (m; converted by 

inSTREAM to cm) that an adult trout in the cell 

must move to reach escape cover (Sect. 9.18.5). 

Number of 

hiding places 

GIS-property-
for-cell-num-
hiding-places 

The number of places in the cell where an adult 

trout could use the hiding activity (Sect. 9.18.6). 

Fraction 

providing 

velocity shelter 

GIS-property-
for-cell-frac-
vel-shelter 

The fraction (0.0 to 1.0) of cell area providing 

velocity shelter for drift feeding (sects. 9.11, 9.13, 

22.2). 

Fraction 

providing 

spawning gravel 

GIS-property-
for-cell-frac-
spawn 

The fraction (0.0 to 1.0) of cell area providing 

gravel spawning habitat (Sect. 9.29). 
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Figure 45. Example View with the optional background image. The image was trimmed in GIS 

to the same extent and shape as the habitat shapefile. 

13.3 Hydraulic input 
The hydraulic input consists of two files for each reach; these files contain lookup tables that 

relate the water depth and velocity in each cell of a reach to the reach’s flow rate. The names of 

these files are provided as the reach parameters depth-file-name and velocity-file-name (Sect. 

14.2). Preparation of these lookup tables is addressed in Sect. 21. The depth and velocity tables 

are provided in separate input files that have identical format. The files are in CSV format and 

designed to be edited in spreadsheet software. 

The hydraulic input files (illustrated in Figure 46) contain: 

• An arbitrary number of lines of header information and comments that are ignored by 

inSTREAM. These header lines must start with a semicolon. We recommend that they 

document the reach the file represents, whether the file contains depths or velocities, and 

who prepared the file and when. 

• A row that contains, in its first column, the number of flows in the lookup table.  

• A row that starts with an empty cell and then contains each of the flows. These flows 

must be in ascending order and in units of m3/s. (In the file shown in Figure 46, the 

velocity lookup table contains 26 flows, ranging from 1.42 to 1416 m3/s.)  

• One row for each cell in the reach. The row starts with the cell identification code, which 

must match the code used in the GIS shapefile (Sect. 13.2). The next columns contain the 

depth or velocity that the cell experiences at the corresponding flow (the flow in the same 

column of row 5). For the depth input file, depths must be in m; velocity input must be in 

m/s. These values are converted to inSTREAM’s standard length unit of cm when read 

in. For example, in Figure 46 cell 10 has a velocity of 0.25 m/s when the reach’s flow is 

1.42 m3/s, a velocity of 0.39 m/s at a flow of 2.12 m3/s, etc., up to 7.23 m/s at 1416 m3/s. 
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Figure 46. Example extract from a hydraulic input file edited in (top) Excel and (bottom) a text 

editor. (The ellipses in column E do not appear in the file but instead represent the 20 columns 

not shown in this figure.) 

13.4 Initial population characteristics 
The initial population file provides the information needed to create the initial trout population, 

using methods described in Sect. 7.3. The name of the file is provided as the model parameter 

initial-population-file (Sect. 14.1.2). 

This input file starts with an arbitrary number of header and comment lines that should include 

the column headers (row 4 in Figure 47). These header and comment lines must start with a 

semicolon: the model software ignores any line in this file that either starts with a semicolon or is 

completely blank. (The NetLogo programming language uses semicolons to designate 

comments.) 

The remaining lines each hold the information to initialize one age class of one species in one 

reach. These lines must contain the following values, in the exact order shown in Figure 47. 

• The species name, exactly as in the parameters that define which species are being 

simulated (Sect. 14.3). This value is case-sensitive. 

• The name of the reach the trout are to be initialized in. The reach name (also case-

sensitive) must exactly match the reach’s name in the parameters defining reaches (Sect. 

14.1.7) and in the GIS file. 
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• The trout age, an integer. These ages do not have to correspond to the age classes used to 

summarize output (Sect. 14.1.5): for example, even if output uses age classes of 0, 1, and 

2 and older, this input can specify ages of 1, 2, 3, and 4. 

• The number of trout to be initialized. 

• The minimum, mode, and maximum of the triangular distribution used to assign lengths 

to the initial trout.  

 

Figure 47. Example initial population initialization input, viewed in Excel. 

13.5 Time series inputs 
The time series input file provides the values of the habitat variables—flow, temperature, and 

turbidity—that vary over time (Figure 48). See the Input Data section of the model description 

(Sect. 8.1) to understand exactly what input is needed and how it is used (e.g., whether input 

must be daily, what time to assign to daily mean values). More than one reach can share the same 

time series file, or each reach can have its own. The names of these files are provided as the 

reach parameter time-series-input-file (Sect. 14.2). This CSV file must contain: 

• A variable number of header and comment lines, which must each start with a semicolon. 

• A row of column labels, not preceded by a semicolon. The first label (“Date” in Figure 

48) is ignored by the software because the first column of input (cells A5 to A11 in 

Figure 48) must be the date and time. The remaining column labels must include the 

exact words “temperature”, “flow”, and “turbidity”, all lower-case and with no spaces. 

(Accidentally including a space in these column labels will cause a run-time error.) The 

order in which temperature, flow, and turbidity appear in the file does not matter; flow 

could be in column B, for example, but date and time must always be in the first column. 

• The input rows providing flow, temperature, and turbidity for each date and time. The 

first column must be the date and time in M/d/yyyy h:mm format. (In Excel, this format 

is found under “Custom” in the number format menu. Be aware that Excel often changes 

the data-time format when opening a CSV file, so you must check that the date and time 

values in column A use the correct format before saving the file for use in inSTREAM.) 
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Figure 48. Example time series input file, viewed in Excel. 

While this file was designed to be maintained in spreadsheet software, be aware that software 

such as Excel often puts quotation marks around text values when saving in CSV format. 

Currently, for the time series input file, quotation marks around header line text cause 

inSTREAM to not recognize the semicolons that tell the software to ignore the line. If 

inSTREAM raises an error when reading this file, open it in a text editor and remove any 

quotation marks. This file is also particularly likely to have blank lines left in it by Excel, which 

also cause errors and must be removed in a text editor (Sect. 13.1). 

If you prefer to use a different date and time format in the first data column, it can be changed 

with a simple edit of the inSTREAM code. In the set-up-time procedure, find the statement that 

includes ts-load-with-format and edit its format code; for example you can change the default 

format from "M/d/yyyy H:mm" to "d-M-yyyy H:mm" to read input such as 18-8-2012 12:00. Do not 

change the date and time format elsewhere in the code, and be very careful with the format 

codes: never use YYYY instead of yyyy, and be aware that seemingly small differences 

(upper vs. lower case, one character vs. two) can cause major errors that could go 

unnoticed. Check the NetLogo time extension’s documentation for information on format codes. 

14 Simulation Control and Parameter Values 
Like all models, inSTREAM 7 uses parameters that are controllable by the user but constant 

during a model run. In addition to the model, habitat, and trout parameters (these terms are 

defined in Sect. 2.2.2), we refer here also to simulation control parameters that determine what 

inputs are used and what outputs produced. 

InSTREAM 7 uses a parameter file: a separate file of NetLogo code that contains only the 

statements that set parameter values. The parameter file is named something like parameters-

MyProject.nls and normally resides in the main project directory. This file is executed by the 

inSTREAM code upon model initialization. You will need to understand the following about the 

parameter file: 

• This file is always customized to a project, so it should be given a project-specific name. 

The file can have any name but must use the extension .nls. 

• It is good practice to add comments at the top of the parameter file and elsewhere in it to 

document the scenario(s) it represents and the changes made to it. Any line that starts 
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with a semicolon (or any text following a semicolon anywhere) is treated as a comment 

and ignored by the computer. 

• The inSTREAM NetLogo file must be given the name of the parameter file. This is done 

near the very top of the NetLogo file’s Code tab in a statement like: 

 
__includes [ "parameters-MyProject.nls" ] 
 

This statement means that the statements in the parameter file are included in the model’s 

code. Simply edit this line as needed to provide the correct parameter file name and then 

save the NetLogo file. 

• If the file name is incorrect in the __includes statement, NetLogo will display a yellow 

error message at the top of the Code tab saying that it could not find the file. If that 

happens, correct the file name and click the “Check” button to make NetLogo re-check 

the code and clear the error statement.  

• The parameter file can be opened and edited from the Code tab by clicking the tab’s 

rectangular button “Included files”. That button opens a menu that lets you select the 

parameter file. After making changes, you must use NetLogo’s File menu to save the 

parameter file. 

• You can also edit the parameter file in a text editor; it is a plain text file. However, this 

must be done before opening the inSTREAM NetLogo file. 

• NetLogo’s handling of included files requires that users, after editing the parameter file, 

save and close it, and close the entire NetLogo file, and then re-open the inSTREAM 

NetLogo file. Otherwise, changes made to parameter values may not be used in the next 

model run. This procedure is necessary for NetLogo versions 6.x, but the non-intuitive 

NetLogo behavior that necessitates it may be corrected in later versions. 

• The parameter file consists mostly of set statements that each assign a value to a 

parameter, e.g.: set start-date "10/1/2000" (Figure 49). The order in which these set 

statements appear in the file has no effect. (The table input described in Sect. 14.3 is an 

exception: its statements must be in a specific order.) 

• Text input such as file names and dates must be in quotation marks. However, many 

model control parameters are Boolean variables with values of either true or false, 

without quotation marks. 

The following subsections show what the parameter file looks like and list the parameters, by 

category, with information on their format and values. All parameters (except some of the input 

parameters) are fully defined in the model description of Part II.  

In the following parameter tables, grey shading indicates site-specific parameters that deserve re-

evaluation for new sites. 

14.1 Model parameters 
These parameters (called “Observer” parameters in NetLogo terminology) control model 

execution, provide input file names, control the kinds of output produced, and define a few 

global processes. They normally appear at the top of the parameter file (Figure 49). Each group 

of model parameters is discussed separately in the following subsections. 
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Figure 49. Example parameter file, part 1: Model run control, input file, GIS variable name, year 

shuffler, and secondary output control parameters. This and subsequent figures illustrate what the 

file looks like in NetLogo’s code editor. 

14.1.1 Model run control 

These parameters (Table 25) control the time period simulated and when some outputs are 

produced. The output frequency and “census” parameters determine when the following output 

files (Sect. 12) are updated: brief population output, detailed population output, individual fish, 

and cell output. When activated, all other outputs are updated each time step. 

The output frequency parameters specify the minimum time between updates of these output 

files. Output is always updated on the first time step of a simulation. The parameter file-output-

frequency specifies how many time units are simulated between output updates, and file-output-

units specifies what time units are used; valid values include "minutes", "hours", "days", and 

"months". For example, if file-output-frequency is set to 1 and file-output-units is set to 

"months", then the population output files will report the population status once per month, 

starting on the simulation’s first time step. To produce output every time step, set file-output-

frequency to 1 and file-output-units to "minutes". (The model never updates its output more 

than once per time step.) 



 

166 

 

 The parameters census-days and census-years-to-skip are designed to make it easy to compare 

population file output to field data that were collected at the same times each year. Trout 

populations are often censused in early and late summer; setting census-days to (list "5/1" 

"9/30") will force inSTREAM to produce output on the first time step of May 1 and September 

30 each year and label that output as a census day, whether or not output would normally be 

produced then. Setting census-years-to-skip to 3 years, for example, tells inSTREAM not to 

produce this census output until three full years have been simulated, to reduce the effects of 

initial population status on results. Therefore, filtering the output to include only census results 

(is-census? has a value of true in the population output files) identifies results for comparison 

to the late-summer field data. The census-days list can have as many values as desired, including 

none (in which case is-census? is never true); census-years-to-skip can be zero. 

(A simple code change can cause output to be produced only on census days, if desired68.) 

Table 25. Model run control parameters. 

Parameter Value type Example 

value 

Parameter function 

start-date Date in 

M/d/yyyy 

format 

"10/1/2000" The first date simulated. 

end-date Date in 

M/d/yyyy 

format 

"9/30/2005" The last date simulated. 

file-output-
frequency 

Integer 2 With file-output-units, the minimum 

time between output of the population 

output files. Use 1 "minutes" to get output 

each time step. 

file-output-
units 

Text "weeks" Time unit for file-output-frequency. 

Valid values are: "minutes", "hours", 

"days", "weeks", "months", and "years". 

census-days List of days of 

the year in M/d 

format 

(list "5/1" 
"9/30") 

Dates on which population output is 

forced and labeled as a census date each 

year. 

census-
years-to-
skip 

Integer 3 Number of years skipped at the beginning 

of a simulation before census output is 

produced. 

 
68 In the procedure update-output, find the statement that determines whether to write to a specific output file, 

e.g., if brief-pop-output? and change it to if brief-pop-output? and is-census?. 
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14.1.2 Input file names and GIS variable names 

These parameters (Table 26) tell NetLogo the names and locations of input files, and which GIS 

shapefile property names to use for cell variables. However, not all the input files are considered 

here: some are unique to each habitat reach and so are provided as reach parameters (Sect. 

14.1.7). 

For input files stored in different directories from the main project directory, the file names must 

include the path to the file. The GIS-file-name below provides an example: the shapefile is in a 

subdirectory of the main project file called ExampleSiteGIS. 

Table 26. Input file name and GIS variable name parameters. 

Parameter Value 

type 

Example value Parameter function 

GIS-file-name Text "ExampleSiteGIS/ExampleSite.shp" The name of the GIS 

shapefile providing cell 

input.  

background-
image-file 

Text "ExampleSiteAirPhoto.jpg" The name of an optional 

image, such as an air 

photo of the site, that 

appears in the View 

background (Sect. 13.2). If 

no image is used, then use 

the value "None". 

initial-
population-
file 

Text "ExampleSite_InitialPopulation.csv" The name of the initial 

population input file. 

GIS-property-
for-cell-ID 

Text "ID_TEXT" The name of the shapefile 

property containing the 

cell identification code. 

GIS-property-
for-cell-
reach-name 

Text "REACH_NAME" The shapefile property 

containing the reach name. 

GIS-property-
for-cell-area 

Text "AREA_M2" The property containing 

cell area. 

GIS-property-
for-cell-
dist-escape 

Text "DISTANCE_T" The property containing 

distance to escape cover. 

GIS-property-
for-cell-num-
hiding-places 

Text "NUM_HIDING" The property containing 

number of hiding places. 
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Parameter Value 

type 

Example value Parameter function 

GIS-property-
for-cell-
frac-vel-
shelter 

Text "FRAC_VEL_S" The property containing 

cell fraction with velocity 

shelter. 

GIS-property-
for-cell-
frac-spawn 

Text "FRAC_SPAWN" The property containing 

cell fraction with 

spawning gravel. 

 

14.1.3 Year shuffler controls 

The year shuffler is part of model run control, but its parameters are listed separately (Table 27) 

because it is less-often used. The year shuffler is a way to replicate simulations by randomly 

shuffling the sequence of water years in the flow, temperature, and turbidity input (Sect. 8.2). 

It is important to understand how the parameter shuffle-rand-seed works. If it is set to 0, then the 

year shuffler uses the same random number generator as the rest of the model. Therefore, if both 

shuffle-rand-seed and random-number-seed are set to 0, a new random sequence of input years 

will be used each model run. (The parameter random-number-seed is the model’s main random 

number seed, explained in Sect. 6.9. Its value is set on the Interface tab.) If instead random-

number-seed is set to a non-zero number while shuffle-rand-seed is 0, then the same sequence 

of shuffled input years will be used, and running the model twice (with no other changes) would 

produce exactly the same results. However, if shuffle-rand-seed is given a non-zero value, the 

model will use same sequence of input years no matter the value of random-number-seed. 

Changing the value of shuffle-rand-seed produces a different sequence of input years. 

Therefore, there are two ways to use the year shuffler for its primary purpose, replicating 

simulations by shuffling the input water years. The simplest is to set both shuffle-rand-seed and 

random-number-seed to 0 so different random numbers are used for everything in each model 

run. The second way is to provide a different value of shuffle-rand-seed for each model run; we 

explain a way to do so in Sect. 15. 

Table 27. Year shuffler parameters. 

Parameter Value type Example 

value 

Parameter function 

shuffle-
years? 

Boolean (true 

or false) 

false If true, activates the year shuffler. 

shuffle-day Day of the year 

in M/d format 

"10/1" If the year shuffler is used, then a new input 

year starts on this day each year. 
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Parameter Value type Example 

value 

Parameter function 

shuffle-
rand-seed 

Non-negative 

integer 

79837 Random number seed for year-shuffling; if 

zero, then the model’s main random generator 

is used by the year shuffler. 

 

14.1.4 Secondary output switches 

These parameters turn secondary output files on or off. These files are listed and described in 

Sect. 12.3 and Table 23, so only examples are shown here in Table 28. 

Table 28. Secondary output control parameters. 

Parameter Value type Example 

value 

Parameter function 

write-frames? Boolean (true or 

false) 

false If true, a graphics file of the Interface 

is written each time step. 

individual-fish-
output? 

Boolean true If true, produces output reporting the 

state of selected individual trout. 

frac-trout-to-
output 

Real number 

between 0.0 and 

1.0 

0.05 The fraction of trout selected for 

reporting in the individual fish output. 

cell-output? etc. Boolean false If true, activates an optional detailed 

output file. 

 

14.1.5 Display and output control parameters 

These parameters (Figure 50; Table 29) control the graphical display and how trout populations 

are summarized in file output. 

One of these parameters, world-resolution, deserves special attention because it has strong 

effects on factors other than display. NetLogo’s built-in distance commands use distances in 

units of patch widths (patches being the built-in square grid cells that inSTREAM uses mainly 

for displaying cell variables; Sect. 11.4). The value of world-resolution is the patch width in cm, 

so it determines how many patches are needed to display the space represented in inSTREAM’s 

GIS shapefile. This resolution must be re-evaluated for each new study site, considering its two 

effects: 

• The lower the value of world-resolution, the more patches NetLogo uses. More patches 

require more computations, which means slower execution (especially to initialize the 
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model) and more memory use per model run. Therefore, world-resolution should be no 

lower than necessary. 

• If world-resolution is too high, inSTREAM cannot be initialized properly because each 

cell must have at least one unique patch and two cells cannot occupy the same patch. If 

this occurs, inSTREAM will raise an error when setup is executed. The error statement 

recommends decreasing the value of world-resolution to solve the problem. (This error is 

partially stochastic, so some values of world-resolution will work sometimes but not 

always. Also, too-small values of world-resolution can cause different run-time errors 

that do not clearly identify the problem; see the trouble-shooting guide of Sect. 17.) 

Therefore, setting up input for a new site requires adjusting world-resolution by trial and error to 

find a value that is just low enough for each cell to have its own patch. However, the inSTREAM 

software includes a utility procedure to identify unusually small cells so their size can be used to 

find a value of world-resolution at which all cells contain at least one patch. (Alternatively, each 

such small cell can be merged with an adjacent cell to allow higher values of world-resolution. 

This merging must be done in GIS and its changes must also be reflected in the hydraulic input 

files.) To use this procedure, enter find-small-cells in the Command Center on the NetLogo 

interface (you do not need to execute setup first). The procedure then reports the patch size (the 

square of world-resolution, cm2) and a list (including the area) of any cells with area less than 

one patch.  

Changing the value of world-resolution also changes the size of the graphical display on the 

Interface tab—the View. However, those changes can be counteracted by changing the patch size 

in Model Settings menu (Sect. 11.4.7). For example, changing world-resolution from 100 to 50 

cm doubles the size of the View but changing patch size from 3 to 1.5 pixels per patch returns 

the View to its original size and has no other effect. (Patch size, unlike world-resolution, has no 

effect on computations.) 

The parameters max-shade-depth, max-shade-velocity, and max-shade-light control how 

inSTREAM colors cells when the user decides to shade them by depth, velocity, or light (Sect. 

11.4.3). They define the value of depth (or velocity or light) at which the shaded color reaches its 

most intense. For example, when max-shade-velocity is 200 cm/s the cell colors shade from 

yellow to red as velocity increases from zero to 200 cm/s, but cells with velocity > 200 all have 

the same dark red color. These variables can be changed to reflect the size of stream being 

modeled: if depths > 200 cm are widespread, for example, then the value of max-shade-depth 

could be increased. 

The parameter age-class-list defines the age classes used in the population output files. (These 

age classes have no effect on model results, only how they are summarized in output files.) The 

parameter must be set to a list of integer ages, starting with 0. If its value is (list 0 1 2), then 

the population output files report results broken out by ages 0, 1, and 2 or more years. Using 

more age classes requires only adding ages to this list. (This parameter does not, however, 

control the age classes in the population graph on the Interface tab, or in output of the 

BehaviorSpace experiment manager described in Sect. 15.) 
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Figure 50. Example parameter file, part 2: Display and output, and light parameters. 

Table 29. Display and output parameters. 

Parameter Value type Example 

value 

Parameter meaning 

world-
resolution 

Positive 

integer 

200 The model display’s spatial resolution as patch 

width (cm); see the above discussion. 

max-shade-
depth 

Real 

number 

200 The cell depth (cm) above which cell colors are 

bluest when shaded by depth. (Below this depth, 

(Shade changes with depth.) 

max-shade-
velocity 

Real 

number 

300 The cell velocity (cm/s) above which cell colors 

are reddest (shade changes with velocity below 

this value), when cells are shaded by velocity. 

max-shade-
light 

Real 

number 

100 The cell irradiance (W/m2) above which cell 

colors are whitest when shaded by light. 

trout-size-
scale 

Real 

number 

1.0 The ratio of trout display size to simulated 

length. 

age-class-
list 

NetLogo 

list 

(list 0 1 2) The age classes used to summarize results in 

output files. The numbers must be ascending 

sequential integers that start with zero. 

 

14.1.6 Light parameters 

Parameters of the light-related submodels that do not to differ among reaches are treated as 

model parameters (Figure 50, Table 30). 
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Table 30. Light parameters. 

Parameter Value type Example 

value 

Parameter meaning 

latitude Real number 38 The site latitude (degrees north latitude). 

light-
correction 

Real number 

between 0.0 

and 1.0 

0.8 The fraction of light lost to the atmosphere (but 

not to shading). 

light-at-
night 

Real number 0.9 The water surface irradiance (W/m2) at night. 

twilight-
angle 

Real number 6.0 The angle (degrees) below the horizon defining 

the start of dawn and end of dusk; 6° is the 

conventional definition of twilight. 

 

14.1.7 Input testing parameters 

InSTREAM 7 has one parameter to control how it checks input files: max-days-between-time-

series-inputs. During model initialization, the software checks the time series input file(s) (Sect. 

13.5) for missing values. Because inSTREAM 7 does not restrict input to a specific temporal 

resolution (Sect. 8.1), users control this check via the value of max-days-between-time-series-

inputs. The model software searches the input file for any places where the time between input 

records (rows) exceeds the value of max-days-between-time-series-inputs, which is in days. 

(This check is made only for dates used in the simulation, between start-date and end-date.) 

If a model application uses daily input, then max-days-between-time-series-inputs should have a 

value of 1.0 d; then, the inSTREAM 7 software will notify the user of any places in the input 

with more than one day between records. If an application uses hourly input, then max-days-

between-time-series-inputs should be set to 0.042 d (just over one hour). Input checking can be 

essentially turned off by setting max-days-between-time-series-inputs to a large number such as 

30 d; however, missing time series input is a very common problem so we strongly recommend 

leaving this check active. 

14.2 Reach parameters 
Reach parameters (Figure 51) include both initialization information—the names of input files 

that must be provided for each reach—and habitat parameters that can differ among reaches. 

To accommodate multiple reaches, the values of these parameters are entered as NetLogo “lists”: 

variables that contain multiple values. The reach parameter code in the parameter file consists of 

statements such as: 

set reach-names            (list "Upstream" "Middle" "Downstream") 
… 
set reach-drift-concs      (list 5.0E-10  3.7E-10  4.9E-10) 



 

173 

 

These statements mean that the project includes three reaches, and that the values of reach 

parameters (such as reach-drift-concs shown here) are entered as a list of three values assigned 

to the reaches named Upstream, Middle, and Downstream. The order of the values in each 

parameter’s list determines which reach it is assigned to: in the above example, the first value in 

each reach parameter list will be used for the reach named “Upstream”, the second value will be 

used for the “Middle” reach, etc. (Even if there is only one reach, the word list must appear 

before the parameter value, all inside parentheses.) 

The reach parameter names in the parameter file are the plurals of the names used in the model 

description of Part II. Plurals are used in the parameter file because inSTREAM uses the lists of 

values provided there to set the parameter value of each individual reach: the list created by the 

statement set reach-drift-concs is used in the code to set the value of each reach’s parameter 

reach-drift-conc. 

Note that some parameter values are likely to be in the scientific notation format used by 

computers. For example, 3.7E-10 means 3.7 × 10-10. 

 

Figure 51. Example parameter file, part 3: Reach parameters. 

14.3 Trout and redd parameters 
The last and biggest part of the parameter file provides values for trout and redd parameters. 

These parameters are numerous and thoroughly defined in the model description (Part II of this 

document) and we do not duplicate that description here. Instead, we provide Figure 52-Figure 

57, which illustrate what this part of the parameter file looks like when edited in NetLogo. These 

figures also provide typical values of the parameters. 

In Part IV, we provide guidance on which trout and redd parameters deserve re-evaluation for 

applications to new sites and species, and on how to develop new values. In general, we 

discourage replacing the standard parameter values with others taken from the literature without 

careful analysis and evaluation: what may appear to be differences among species or populations 

often really result from differences in study methods or in characteristics of the particular fish or 

habitat studied. This caution is especially relevant for bioenergetics parameters and parameters 

representing effects of temperature on trout and redd survival. 
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InSTREAM 7 is designed so that only the parameter file must be modified to change which 

species and how many species are simulated. This design is why each trout and redd parameter is 

entered not as a single value but as a list with one value for each species. The first trout 

parameters are species-list and trout-display-color (at the top of Figure 52). The value of 

species-list is a list of the names of the species in the simulation. All remaining trout and redd 

parameters must be lists of values for the same species, in the same order. For example, the 

second statement in Figure 52 tells inSTREAM that Rainbow Trout are displayed with the color 

red, that Brown Trout are displayed as brown, and Cutthroat Trout are displayed as green. 

To add, remove, or change species, one must edit the values of species-list and trout-display-

color to provide the desired species names and display colors, and then edit all the set 

statements for trout parameters to provide one value per species, in the species order defined by 

species-list. These values must be inside the (list ... ) statements as illustrated in the figures. 

Spacing and number formats are generally unimportant; values must be separated by one or more 

spaces or tabs.  

Two parameters, for the dates defining the spawning season, also require the time:create 

command seen in Figure 52; it converts these dates from text to inSTREAM’s date code. Only 

the dates, in M/d format, should be changed. 
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Figure 52. Example parameter file, part 4: Trout parameters (a)—species names, feeding and 

growth, and spawning. 
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Figure 53. Example parameter file, part 5: Trout parameters (b)—survival, redds, and 

superindividual size. 

InSTREAM uses three trout parameters that are each actually a table of values that define a 

nonlinear function. These parameters represent the effect of temperature on the maximum food 

consumption rate (Cmax; Sect. 9.24), and how spawning habitat suitability varies with cell depth 

and velocity (Sect. 9.29). These tables are entered in the parameter file as actual tables of values, 

with one table per species. (The code in the parameter file, which you need not understand, 

converts the values into an internal table format and stores a copy for each species.) These tables 

consist of several rows, each providing an X-Y pair for the function. For example, in Figure 54 

the Cmax function for each species consists of 7 such rows, defining how Cmax changes as 

temperature increases from 0.0 to 30.0°C. 

These tables are easily modified by editing the data values in the table:put statements. Rows 

can be added or deleted to modify the number of points in these functions. However, the rows 

defining each table must be in increasing order of their X (temperature, depth, velocity) values, 

and the first X value must be 0.0 (because water temperature, depth, and velocity cannot be less 

than zero). Different species can have different numbers of rows in their tables. The species 

names in the final table:put statements must exactly match those defined in the species-list 

parameter. 
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Changing the number of species requires, first, adding (by copying and modifying) or deleting 

tables so that one is provided for each species. Second, the statements that put each species table 

into a master table (the last lines in Figure 54) must be edited. For example, Figure 55 shows 

what the CMax function parameters look like when converted from the three-species application 

of Figure 54 to a single-species model.  

 

Figure 54. Example parameter file, part 6: Trout maximum consumption interpolation tables for 

a three-species application. 

 

Figure 55. Trout maximum consumption interpolation table for a one-species application. 
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The statements providing the spawning depth and velocity suitability functions are illustrated in 

Figure 56 and Figure 57. These functions can be modified exactly as the Cmax table can, making 

sure that depth and velocity always start at 0.0 and increase from row to row. 

 

Figure 56. Example parameter file, part 7: Trout spawning depth suitability interpolation tables. 
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Figure 57. Example parameter file, part 8: Trout spawning velocity suitability interpolation 

tables. 

15 Simulation Experiments with BehaviorSpace 
Using models like inSTREAM means designing and executing simulation experiments: sets of 

model runs designed to answer specific questions. In typical applications, simulation 

experiments are used to calibrate the model, to examine the sensitivity of its results to various 

inputs, and to address management questions such as which alternative instream flow scenario 

would best sustain a trout population and why.  

NetLogo includes a tool for automating the execution of simulation experiments, called 

BehaviorSpace. After the user makes a few minor edits to the NetLogo file and fills out a short 

menu, BehaviorSpace automatically sets up the input for multiple model runs that each have 

different values of selected parameters, executes those runs in parallel on the computer’s 

multiple processors, and compiles the results. Only a basic understanding of BehaviorSpace is 

needed to make it extremely useful; all but the most casual users of inSTREAM 7 will benefit 

from learning to use it. 

15.1 Introduction to BehaviorSpace 
The NetLogo User Manual’s section on BehaviorSpace is the best place to begin learning about 

it. (Chapter 8 of Railsback and Grimm 2019 also provides an introduction to BehaviorSpace.) 

Here we assume that users have first read the User Manual section. 

(The User Manual section on BehaviorSpace includes a subsection on Advanced Usage, 

including running experiments from the command line. This subsection is not relevant to typical 
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users, but some may benefit from noting that the command line interface can be used to run large 

simulation experiments on computer clusters.) 

Briefly, using BehaviorSpace involves:  

• Selecting one or a few parameters to vary. These can be any of the parameters in the 

parameter file: numbers, input file names, dates (e.g., the simulation start and end dates), 

and true-false switches.  

• Selecting a set of values to use for each of these parameters.  

• Deciding whether to produce replicates of each parameter combination: multiple model 

runs with the same parameter values but different random numbers. 

• Specifying what output to record from each run (instead of, or in addition to, 

inSTREAM’s standard output files). 

• Letting BehaviorSpace automatically set up model runs for all combinations of the values 

of all selected parameters, with the selected number of replicates. For example, if we tell 

BehaviorSpace to use two values of the time-series input file name, and to vary the reach 

drift food concentration from 5.0 to 10.0 × 10-10 in steps of 1.0 × 10-10, then 

BehaviorSpace will set up 12 model runs with all combinations of file name and drift 

concentration. If we also choose 5 replicates, we will have 60 model runs. 

• BehaviorSpace then executes all the model runs and writes selected results from each run 

into its single output file. 

To understand the following instructions for using BehaviorSpace, it is essential to understand 

exactly how it works. When BehaviorSpace starts each model run: 

1. It first sets the values of the parameters that it varies.  

2. Next, the Setup procedure is executed, as if we had clicked the Setup button. This first 

erases everything in the model, sets the values of all parameters to zero, then executes the 

code in the parameter file (Sect. 14) to re-set all parameter values. However, parameters 

that are defined on the Interface tab as sliders, switches, and inputs (Figure 58) are not 

altered by this setup step. 

3. The model run starts and runs until finished. 

This sequence means that BehaviorSpace can only control parameters that are defined on the 

Interface tab as shown in Figure 58. If instead we told BehaviorSpace to set the value of a 

parameter defined in the code and parameter file, the BehaviorSpace value would be erased and 

overwritten in the Setup step.  
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Figure 58. Example Interface showing parameters defined via a slider (food-adjuster), inputs 

(time-series-file; random-number-seed), and switches (for output files). 

15.2 Experiment setup 
We recommend the following sequence of steps for setting up and running a BehaviorSpace 

experiment. These steps may seem complicated to beginners, but we believe mastering them is 

not difficult and they can save a great deal of time. 

Each BehaviorSpace experiment should be treated as a separate inSTREAM project: put it in its 

own directory with its own copy of the NetLogo file, the parameter file, and the input files. The 

NetLogo and parameter files will be modified for the experiment. 

Step 1: Design the experiment by selecting the parameters to vary and their values. Common 

experiment designs are discussed in Sect. 24 and 18. Here we use two examples: a calibration 

experiment that varies both food availability and predation risk, and a contrast of alternative flow 

and temperature scenarios. 

For the calibration experiment, we want to simulate 5 food availability scenarios that use drift 

food concentrations and search food production rates 25%, 50%, 100%, 150%, and 200% of the 

pre-calibration values. We also vary the parameter that controls survival of terrestrial predation 

(reach-terr-pred-min) from 0.95 to 0.98 in steps of 0.01. BehaviorSpace will therefore run the 

model 20 times, once for each combination of these parameter values. 

For the experiment contrasting alternative flow and temperature scenarios, we use three different 

time series input files for the one reach we are modeling: Scen1-time-series-inputs.csv, Scen2-

time-series-inputs.csv, and Scen3-time-series-inputs.csv. We will execute five replicates of 

these scenarios, for 15 model runs. 

Step 2: Define new parameter control variables on the Interface. We need to define new 

variables, just for the experiment we are running, that link BehaviorSpace to the parameters we 
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want to control. BehaviorSpace will set the values of these new variables, and then the setup 

code in our parameter file will be modified to use the new variables to set the parameter values. 

We can do this in several ways. 

For the calibration experiment, we want to vary two food parameters, reach-drift-conc and 

reach-search-prod, by multiplying both by a fraction (from 25% to 200%) of their standard 

value. We can do this by defining a new variable food-adjuster that we then multiply the drift 

concentration and search food production by. This new variable is defined by creating a slider on 

the Interface (Figure 59). The NetLogo User Manual’s Interface Tab Guide provides instructions 

for creating variables on the Interface.  

(You can make up any names for control variables added to the Interface. If NetLogo displays a 

yellow error statement saying that there is already a global variable with the name you chose, 

simply go back to the Interface, right-click on the item you just added, and edit the variable 

name.) 

 

Figure 59. Creating a food-adjuster variable on the NetLogo Interface. When a slider is added to 

the Interface, this menu appears. Fill it out with the name of the variable being created, the range 

of its values, and its initial value. 

We also need a slider to control the second parameter in the calibration experiment, reach-terr-

pred-min. For this parameter, we will let BehaviorSpace simply set its value instead of using an 

“adjuster” as we did for food. We create a new variable called terr-pred-min-value that ranges 

from 0.0 to 1.0 (Figure 60). 
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Figure 60. The slider for controlling terrestrial predation survival. 

Our second example experiment requires BehaviorSpace to control an input file name, which is a 

text (or “string”) variable. Therefore, we need an “Input” item on the Interface that defines a 

character string. We add an input that defines a string variable we will call time-series-file 

(Figure 61). 

 

Figure 61. Adding an “input” to define a string variable such as a file name. 

Step 3: Edit the parameter file to use the new control variables to set parameter values. Now 

that we have created the control variables on the Interface, we need to edit the parameter file to 

use those variables to set the parameter values. This requires only some simple changes to the 

set statements in the parameter file. 

For our example calibration experiment, we want to multiply the two food availability 

parameters by the value of the control variable food-adjuster. We do this by changing these 

statements in the parameter file:  

  ;; Reach-scale habitat parameters 
  set reach-drift-concs           (list 5.0E-10 ) ; Concentration of drift food, g/cm3 
  set reach-search-prods          (list 7.5E-7 ) ; Production of search food, g/cm2/d 

to: 

  ;; Reach-scale habitat parameters 
  set reach-drift-concs           (list (5.0E-10 * food-adjuster ) ) 
  set reach-search-prods          (list (7.5E-7 * food-adjuster ) ) 

This example has only one reach, but the same approach is used with multiple reaches: multiply 

the standard parameter value by food-adjuster, and put the multiplication for each reach within 

its own new set of parentheses; an example for two reaches is: 

  set reach-drift-concs (list (5.0E-10 * food-adjuster) (5.0E-10 * food-adjuster )) 
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To set the predation survival parameter to the Interface slider value of terr-pred-min-value, 

simply change this parameter file statement: 

  set reach-terr-pred-mins        (list 0.95) 

to: 

  set reach-terr-pred-mins        (list terr-pred-min-value) 

For our second example experiment, we need to set the reach’s time series input file to the string 

variable time-series-file that is in the Interface input. In the parameter file, simply change this: 

  set time-series-input-files (list "ExampleSite_ObservedInput.csv") 

to this: 

  set time-series-input-files (list time-series-file) 

(Note that quotation marks are not used around time-series-file because it is a variable name, 

not text.) 

Step 4: Test and save the changes. After making these changes to the NetLogo file (adding 

control variables to the Interface) and parameter file, save both files. Because of some non-

intuitive NetLogo behavior discussed in Sect. 14, after saving both the NetLogo and parameter 

files you must also close them both and re-start NetLogo to ensure that the changes are 

implemented in BehaviorSpace runs. 

You should also test and debug the changes: simple mistakes such as misspelling variable names 

or forgetting parentheses are common. Test the changes by: 

• In the Code tab or when editing the parameter file in NetLogo, click the “Check” button 

to run NetLogo’s syntax checker. It will find most mistakes. 

• Set up and run inSTREAM in the normal way, for at least a few time steps. 

Step 5: Set up the BehaviorSpace experiment. From the NetLogo Tools menu, select 

BehaviorSpace. This opens a small dialog that lets you select an existing experiment or create a 

new one. (BehaviorSpace uses the word “experiment” for the settings that define one simulation 

experiment. These experiments are stored in the NetLogo file so they can later be edited, 

duplicated and edited into a new experiment, and executed. We normally distribute inSTREAM 

7 with an example experiment saved in it.) 

When you create a new experiment, BehaviorSpace opens a menu for you to edit (Figure 62). 

We recommend that you first give each experiment a new name; this name identifies the 

experiment for later re-use and also becomes part of the experiment’s output file name.  
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Figure 62. A new BehaviorSpace experiment. 

In the “Vary variables...” box, BehaviorSpace automatically includes all the parameters defined 

on the Interface. For inSTREAM 7, these will include all the file output switches, the random 

number seed, plus the variables you put there to control an experiment. The file output switches 

should normally be set to false, but see Sect. 15.4 about using output files with BehaviorSpace. 

You must edit the lines for your experiment control variables to tell BehaviorSpace what values 

to use in the experiment. For our example calibration experiment, we want food-adjuster to have 

several values from 0.25 to 2.0. Therefore (following the examples provided in the menu), we 

change the line: 

["food-adjuster" 1] 

to: 

["food-adjuster" 0.25 0.5 1.0 1.5 2.0] 

To give the survival parameter its values, we can use BehaviorSpace’s option to specify a 

starting value, an increment, and an ending value. We change this line:  

["terr-pred-min-value" 0.95] 

to this (note the additional set of brackets to tell NetLogo that we’re using start, increment, and 

end values): 

["terr-pred-min-value" [0.95 0.01 0.98]] 

For the scenario contrast experiment, we enter the three file names we want to use as values of 

the variable time-series-file: 
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["time-series-file" "Scen1-time-series-inputs.csv" "Scen2-time-series-inputs.csv" 
"Scen3-time-series-inputs.csv"] 

You can set “Repetitions” in the experiment menu to a value higher than 1 if you want replicates 

of each parameter combination. For example, if “Repetitions” is set to 5, then BehaviorSpace 

will run five simulations with each combination of parameter values, with only the random 

numbers differing among the five runs. (If you use repetitions, the value of random-number-

seed must be set to 0 on the Interface and in the experiment menu, if it appears there; otherwise 

each “repetition” will be identical.) 

The final part of the experiment menu to change is the box labeled “Measure runs using these 

reporters”. In this box, you put variable names or code statements that define the outputs you 

want BehaviorSpace to produce in its output file. BehaviorSpace produces its own output file 

that includes results of all the model runs in the experiment, which is very convenient for 

analysis.  

Using inSTREAM’s standard output files can eliminate the need to specify any outputs here in 

the experiment menu, and therefore the need to program global variables used only to report 

output in BehaviorSpace (explained below). We describe both options—using standard output 

files (in Sect. 15.4) and (here and in Sect. 16.6) using custom BehaviorSpace output variables. 

BehaviorSpace’s output file automatically includes the values of all the parameters in the “Vary 

variables...” box, so you do not need to include them in the “Measure runs...” box. New 

experiments contain only the text count turtles in this box, which is not useful for inSTREAM; 

delete it. Instead, we typically output the date and time, the light phase (dawn, day, etc.), whether 

it is a census time step, and the number and mean length of trout by age class: 

formatted-sim-time 
light-phase 
is-census? 
age-0-abund 
age-1-abund 
age-2+-abund 
age-0-length 
age-1-length 
age-2+-length 

Each of the above outputs is a “global” variable that inSTREAM updates every time step. At 

Sect. 16.6 we provide information on customizing these output variables, e.g., to break them out 

by species or habitat reach. However, using inSTREAM’s standard output files as described in 

Sect. 15.4 can provide more detailed output without the need for these custom output variables. 

The output lines can also include code statements that calculate an output value. For example, 

this statement could be included in the “Measure runs...” box: 

sum [cell-area] of cells with [depth > 20] 

to output the total area of habitat with depth > 20 cm. Writing such custom output statements 

requires knowledge of NetLogo programming and how inSTREAM is programmed.  
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If you check the box “Measure runs at every step”, BehaviorSpace will output the state of the 

model every time step; if this check box is unchecked, you will get results only for the final time 

step, which is rarely useful for inSTREAM. 

After making these edits to the experiment, click the “OK” button to exit the menu. It is smart to 

save your NetLogo file at this point, to save the experiment. 

Step 6: Run the experiment. Now that the experiment is defined and saved, you can have 

BehaviorSpace execute all the model runs.  

1. Open BehaviorSpace from the Tools menu.  

2. Select the experiment you want to run, and click “Run”. This opens the Run options 

dialog (Figure 63). 

3. From the options, always select “Table output” and not “Spreadsheet output”. (These 

options control how the output file is organized.)  

4. The “Simultaneous runs in parallel” option displays how many processors (“threads”) 

your computer’s CPU has; by default BehaviorSpace will simultaneously run one model 

run per processor. (If your experiment has 24 model runs and your computer has 4 

processors, BehaviorSpace will start 4 runs, and start another run every time an earlier 

one finishes, until all 24 are complete.) You can use this default to devote as many 

processors as possible to BehaviorSpace (you will still be able to do basic tasks on the 

computer but perhaps more slowly than normal), or you can let BehaviorSpace use all but 

1 processor (set “Simultaneous runs in parallel” to one less than the default) to reserve a 

processor for other tasks. 

 

Figure 63. BehaviorSpace’s run options dialog. 

5. Click OK. BehaviorSpace will then let you choose where it will write its output file. 

Normally, select the project directory. 

6. BehaviorSpace now starts the model runs. While the runs execute, a “Running 

Experiments” dialog appears to display their progress (Figure 64; it takes a few seconds 

for this dialog to appear as the runs are set up). By checking the “Update view” and 

“Update plots and monitors” boxes, you can observe the progress of one selected run. 

These updates consume some computer resources so are normally turned off, though for 

inSTREAM their cost is small compared to that of running the model.  

7. Watch the model interface for at least a few minutes as the first model runs are set up and 

started. Any problems with input files, parameter values, etc., are likely to show up as 

error dialogs that pop up in the background; they may be impossible to read behind the 

other dialogs. If you see anything that looks like an error dialog, click the “Abort” button 

to stop the experiment, then determine if something needs to be fixed. 
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8. The presence of the “Running Experiment” dialog indicates that BehaviorSpace is still 

running. (After the first model run is finished, it may appear that nothing is happening but 

the other model runs are executing as long as the dialog’s “Total elapsed time:” continues 

to increase.) When all runs are finished, this dialog will disappear.  

 

 

Figure 64. The Running Experiment dialog that appears while BehaviorSpace is executing its 

model runs. 

15.3 BehaviorSpace output 
The BehaviorSpace output file provides results of all the experiment’s model runs in one file 

(Figure 65). Its header lines report the names of the NetLogo file and experiment that produced 

it, and when the experiment started. Then the columns report: (column A) the run number (the 

model runs executed by BehaviorSpace are numbered sequentially, starting with 1); (in this 

example, columns B-G) the value of all variables that were controlled in the “Vary variables...” 

box of the experiment menu (Figure 62); (column H) the time step (“tick” in NetLogo 

terminology) at which the output was written, and (all remaining columns) the values of all the 

outputs defined in the experiment menu. Note that the first output is written after the model is set 

up but before its first time step is executed ([step] has a value of 0). 

You can see from Figure 65 that BehaviorSpace writes lines of output as each model run 

proceeds, so when multiple runs are executed in parallel on different processors their output is 

mixed together. You can sort the output by run number if you need to see each run’s results 

separately, but typically for analysis it is not necessary to sort the output file. 

The output file is in CSV format and readily opened in spreadsheet or statistical software. 

Excel’s “PivotTable” tool is excellent for extracting and summarizing results from the file 
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(without having to sort it). For example, in a PivotTable it is very easy to filter results and 

produce averages or annual time series from the time steps when is-census? is true. 

BehaviorSpace “locks” its output file while an experiment is running, so you can open it in read-

only mode to check progress before the experiment finishes, but do not try to save any changes 

to the file until the experiment finishes. 

 

Figure 65. Example BehaviorSpace output file, as it appears in Excel. 

15.4 BehaviorSpace and output files 
Users can analyze BehaviorSpace experiments using inSTREAM’s standard output files, in 

addition to or instead of the BehaviorSpace output file described in Sect. 15.3. We recommend 

the following procedure for doing so. 

First, turn on the desired output files, as described in Sect. 12. When written by a BehaviorSpace 

experiment, separate output files are written for each model run. To indicate which model run 

produced which output file, the file names for main output files (Sect. 12.2) include the 

BehaviorSpace run number, and the output includes an additional column containing the run 

number.  

Second, run the BehaviorSpace experiment. You must not open the inSTREAM output files with 

Excel while they are still being written to by BehaviorSpace; doing so will cause a NetLogo error 

when it tries to write to the opened file. However, (a) you can open the file during a run using 

software, such as the Notepad++ text editor, that does not lock the file when editing it; or (b) you 

can copy a file that BehaviorSpace is using and look at the copy. 

Third, when the experiment finishes, combined all the output files of one type (e.g., the brief 

population output files) into one file that contains the output from all runs. The files can be 

combined by hand (e.g., by opening each in Excel and pasting their contents into one worksheet), 

using scripts in platforms such as R, or by using operating system commands. In Windows, you 

can: 
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1. Open the Windows Command Prompt (under the Windows System menu). 

2. Navigate to the directory containing the output files, using the cd (change directory) 

command; e.g., cd MyProject\InSTREAM\CalibrationExpt2 

3. Use the copy command to concatenate all the output files of one type into a single file; 

e.g., the command copy BriefPopOut* BriefPop-AllRuns.csv will concatenate all 

the brief population output files in the directory into the new file BriefPop-

AllRuns.csv. 

You can alternatively use the Windows Powershell, in which the command to combine files is: 
get-content BriefPopOut* | set-content BriefPop-AllRuns.csv 

In MacIntosh and Linux operating systems, open a terminal window, navigate to the output 

directory using cd, and combine files using the cat command: cat BriefPopOut* > BriefPop-
AllRuns.csv 

Now you can open and analyze the combined file, but you will encounter three potential 

problems. First, the combined file will contain the header lines from each separate output file. 

These extra header lines can be removed by sorting the file by, e.g., the BehaviorSpace run 

number.  

The second problem is that the combined file can be very large, often too large to open in Excel. 

We provide a tool on the InSTREAM web site to reduce file size by keeping only the desired 

lines. This tool is a NetLogo program (OutputFileFilterer.nlogo) that is easily customized 

to define which output lines to keep, e.g., those for specific age classes or ranges of dates. The 

tool eliminates extra header lines at the same time. 

The third problem is that InSTREAM’s standard output files do not report the values of the 

parameters that were varied among the BehaviorSpace runs; they only report the run number. If 

you need the output file to include columns for these parameter values, you can use the 

BehaviorSpace output file (Sect. 15.3) as a lookup table that provides the parameter values for 

each run. You can, for example, open the BehaviorSpace output file in Excel, copy it into the 

workbook containing the other outputs, and use Excel’s vlookup function to report parameter 

values associated with each run number. 

15.5 Year shuffler replication 
The year shuffler (sects. 8.2 and 14.1.3) is designed as an alternative way to replicate simulation 

experiments, so it is typically used within BehaviorSpace. However, using it correctly requires 

some care.  

We use the year shuffler as an alternative to using the replicates option in the BehaviorSpace 

experiment setup (Sect. 15.2); instead of only changing the random numbers among model runs, 

the year shuffler lets us run a set of scenarios multiple times, each time with a different sequence 

of water years. There are two ways to do this, with different consequences. 

The easiest (but usually not best) way to use year shuffling is to: (a) set the year shuffler’s 

parameter values (Sect. 14.1.3), and set the parameter shuffle-years? to true, (b) set both 

random-seed and shuffle-rand-seed to 0, and (c) set BehaviorSpace’s replicates to how many 

year-shuffler replicates you want. This will execute each scenario multiple times, with input 
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years shuffled each time. However, it is very important to understand that the sequence of water 

years will be randomized in each model run, so the different scenarios will be executed with 

different sets of shuffled water years. Consequently, some differences in results among scenarios 

will result from the different water year shuffles used for each scenario. 

The second, more common, way to use the shuffler causes all scenarios to be executed using the 

same sequences of water years. We do this by using shuffle-rand-seed: by giving each scenario 

the same set of shuffler random seeds, we assure that all scenarios experience the same set of 

time series inputs. Do this by:  

• Creating a slider on the interface containing a variable named something like shuffle-

seed-control,  

• In the parameter file, change set shuffle-rand-seed 0 to  

set shuffle-rand-seed shuffle-seed-control. 

• In the BehaviorSpace experiment setup, add this to the variables to be controlled: 
["shuffle-seed-control" 1 2 3 5 6] 

This will create, for each scenario, one year-shuffler replicate for each value given to "shuffle-

seed-control". (Note that "shuffle-seed-control" numbers must be integers, but their values 

are otherwise unconstrained.) 

Keep in mind that the year shuffler automatically writes its own output file for each model run. 

These outputs show what actual years of data were used as shuffled input so you can understand 

and verify what the shuffler did. 

16 Software Modification 
Making inSTREAM’s software easier for users to modify was a major motivation for 

programming it in NetLogo. Even though the model can be applied to new study sites and trout 

species with changes only to the parameter file, our experience with previous versions leads us to 

expect that many users will want to make small changes to the model code. Users are also likely 

to want to modify inSTREAM’s graphical interface, especially by adding or changing plots. 

Here, we provide guidance for several kinds of change most likely to be needed. Regular users of 

inSTREAM 7 will likely find it worthwhile and easy to learn enough about NetLogo to 

understand, write, and test code and to modify and add graphics to the Interface. 

This section includes many code examples. We remind readers that in NetLogo’s programming 

language any text to the right of a semicolon is a comment ignored by the computer. 

16.1 General procedures for modifying code 
NetLogo provides a very powerful programming language with many built-in commands 

(“primitives”) specifically for individual-based modeling, plus excellent error-checking tools. 

Unlike conventional programming languages, NetLogo does not require a separate compilation 

stage: we can edit the code and then run it immediately without having to convert code files into 

an executable program file.  

NetLogo programs are divided into procedures: modular blocks of code that each implement a 

submodel or function. At the top of the Code tab in NetLogo, there is a button labeled 



 

192 

 

“Procedures”; clicking on it opens a list of procedures in the code, and clicking on a procedure’s 

name takes you to it. There are roughly 90 procedures in the inSTREAM code. Each starts with 

comments describing what the procedure does and what kind of model entity (observer, trout, 

cell, ...) executes it. 

In general, modifying the inSTREAM 7 code involves the following steps. 

1. Decide exactly what you want to change and how, and thoroughly describe the change in 

a written document. If you want to make a substantial change in a submodel, program the 

new submodel independently (in Excel, R, etc.) and explore it thoroughly and work out 

any problems before trying to implement it in inSTREAM. Even for small changes (like 

the ones we illustrate in the following subsections), it will be important to know exactly 

what you want to do before changing the code. 

2. Create a new project by copying an existing one. Never attempt to modify the model 

without keeping a copy of the unmodified code and input. Give the NetLogo file a new 

name, and keep notes in its Info tab documenting the changes. 

3. Find the place(s) in the code needing modification. The following subsections tell you 

where to make common changes. For other changes, remember that the model description 

of Part II includes footnotes saying where each part of the model is coded. 

4. Make the code changes. Programming almost always requires frequent use of NetLogo’s 

Dictionary to find and understand useful primitives. 

5. Check the revised code for errors by clicking the Code tab’s “Check” button. This button 

runs a syntax checker that will find many kinds of mistakes. 

6. Save the changed NetLogo file. 

7. Make a test run. Mistakes often do not appear until the model is executed, and NetLogo is 

excellent (but not perfect) at telling you exactly what is wrong and where.  

8. Test your change. Even though NetLogo’s language is very easy to use, it does not by 

any means guarantee mistake-free code. In fact, it can be very easy to write code that 

looks like it does what you want when in fact it does not. Always test any change in the 

code immediately and thoroughly, instead of risking a mistake that costs a great deal of 

time. InSTREAM’s debugging output files often provide enough information to test code 

changes. Additional test procedures and example code tests are available from the 

inSTREAM web site, and Chapter 6 of Railsback and Grimm (2019) provides numerous 

testing methods.  

For changes that involve the number of trout (e.g., adding output related to trout abundance), be 

aware that the use of superindividuals (Sect. 4.1.4) complicates calculation of abundance. The 

NetLogo statement count trout (or: count trout with [trout-species = "Rainbow"], e.g.) 

reports the current number of model trout, but some model trout may be superindividuals 

representing more than one fish. Therefore, the correct way to report the number of trout is:  

sum [trout-superind-rep] of trout. (or, e.g.: sum [trout-superind-rep] of trout with 

[trout-species = "Rainbow"]). 

16.2 Modifying the population output files 
InSTREAM 7’s standard and secondary output files provide results in various levels of detail 

(Sect. 12). Often, though, users can simplify model analysis by adding variables to an output file, 
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or by removing detail to better summarize results. These changes require code edits, but the code 

design makes this easy. 

The main output files are defined in two procedures. The file headers (information at the top of 

the file and column labels) are defined in build-output-file-named, while the output lines are 

produced in update-output. Adding or removing variables from these files requires changes in 

both of these procedures.  

Here are examples of the two kinds of changes you can make to the two main population output 

files: adding an output variable, and adding a breakout variable. (We address the events output 

files separately at Sect. 16.3. The redd output file is less likely to need modification and we do 

not address it here.) 

Adding an output variable. First, let’s modify the brief population output file to add the mean 

cell depth of trout. Without explaining the details, let us tell you that the code mean [depth] of 

calculates the mean depth occupied by a set of trout. (While the model description defines depth 

as the cell variable cell-depth, the code treats depth as a patch variable so it can be displayed as a 

color.) We start by adding depth as a labeled column in the brief population output file, 

modifying this code that creates the file in the procedure build-output-file-named: 

to build-output-file-named [a-file-name] 
  ; An observer procedure to initialize an output file. 
  ; The parameter a-file-name is the global variable for the file name. 
 
  ; Create the brief population output file. 
  if a-file-name = "b-p-o-n" ; This is the value of the uninitialized file name 
  [ 
    set brief-pop-outfile-name (word "BriefPopOut-" outfile-name-base) 
    if file-exists? brief-pop-outfile-name [ file-delete brief-pop-outfile-name ] 
    file-open brief-pop-outfile-name 
    file-print (word "InSTREAM 7 brief population output file, Created " date-and-
time) 
    file-print "End of time step,IsCensus?,Light phase,Reach,Species,Age class, 
Count,Mean length,Mean weight,Mean condition,FractionDriftFeeding, 
FractionSearchFeeding,FractionHiding" 
    file-close 
  ] 

The column headers are written in the final file-print statement, which we change by adding 

mean depth as the final output variable: 

    file-print "End of time step,IsCensus?,Light phase,Reach,Species,Age class, 
Count,Mean length,Mean weight,Mean condition,FractionDriftFeeding, 
FractionSearchFeeding,FractionHiding,Mean depth" 

Then we modify this code in update-output that calculates the output each time step: 

    ; Do the brief population output 
    if brief-pop-output? 
    [ 
      if brief-pop-outfile-name = "b-p-o-n" [ build-output-file-named brief-pop-
outfile-name ] 
      file-open brief-pop-outfile-name 
 
      foreach reach-names [ next-reach -> 
        foreach species-list [ next-species -> 
          foreach age-class-list [ next-age -> 
           let last-age? (next-age = last age-class-list)  ; last-age? is true if.. 
           let age-label (word "Age-" next-age) 
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           let the-fish nobody 
           ifelse last-age? 
           [ 
             set age-label (word age-label "+") 
             set the-fish trout with [ ([reach-name] of patches-reach = next-reach) 
and (trout-species = next-species) and (trout-age >= next-age) ] 
           ] 
           [ set the-fish trout with [ ([reach-name] of patches-reach = next-reach) 
and (trout-species = next-species) and (trout-age = next-age) ] 
           ] 
 
           ; These statements are to make output work when there are no fish... 
           ; (because "mean" raises an error if there are no values). 
           let the-count 0.0 
           let the-length 0.0 
           let the-weight 0.0 
           let the-condition 0.0 
           let the-frac-drift 0.0 
           let the-frac-search 0.0 
           let the-frac-hide 0.0 
 
            if any? the-fish 
            [ 
              set the-count (sum [trout-superind-rep] of the-fish) 
              set the-length (mean [trout-length] of the-fish) 
              set the-weight (mean [trout-weight] of the-fish) 
              set the-condition (mean [trout-condition] of the-fish) 
              set the-frac-drift (count the-fish with [ trout-activity = "drift" ] / 
count the-fish) 
              set the-frac-search (count the-fish with [ trout-activity = "search" ] / 
count the-fish) 
              set the-frac-hide (count the-fish with [ trout-activity = "hide" ] / 
count the-fish) 
            ] 
 
              file-print csv:to-row (list formatted-sim-time is-this-a-census-date? 
light-phase next-reach next-species age-label 
                 the-count 
                 the-length 
                 the-weight 
                 the-condition 
                 the-frac-drift 
                 the-frac-search 
                 the-frac-hide 
                ) ; End of output list 

Clearly, this code breaks the trout population down into species and age class sets, then 

calculates summary statistics on each such set and writes them. To add the mean depth of each, 

we add it as the last of the let statements: 

           let the-frac-hide 0.0 
           let the-depth 0.0 

and as the last of the final set statements: 

              set the-frac-hide (count the-fish with [ trout-activity = "hide" ] / 
count the-fish) 
              set the-depth (mean [depth] of the-fish) 

and to the end of the file-print statement: 

                 the-frac-hide 
                 the-depth 
                ) ; End of output list 
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Adding a breakout variable. Now we show how to modify the same output file to break results 

out by an additional variable by which trout can be categorized. The code above breaks out the 

population summary (i.e., writes a separate line of output) by habitat reach, trout species, and 

trout age class. If we also want results separated by trout sex (the variable trout-sex, which has 

values of “male” and “female”), we need to add sex to the file headers and to the code that 

breaks out and calculates summary statistics. Because the code for age class is more complex, it 

will be easiest to add sex after species and before age class. In the procedure build-output-file-

named, we add “Sex” as a column header, so the statement that writes column headers becomes: 

    file-print "End of time step,IsCensus?,Light phase,Reach,Species,Sex,Age class, 
Count,Mean length,Mean weight,Mean condition,FractionDriftFeeding, 
FractionSearchFeeding,FractionHiding" 

In the procedure update-output, we need to add a statement that defines a list of values for trout-

sex and iterates through the list while defining the sets of trout to calculate statistics on. We 

change this code: 

      foreach reach-names [ next-reach -> 
        foreach species-list [ next-species -> 
          foreach age-class-list [ next-age -> 

to this: 

      foreach reach-names [ next-reach -> 
       foreach species-list [ next-species -> 
        foreach (list “female” “male”) [ next-sex -> 
         foreach age-class-list [ next-age -> 

Then we need to modify the statements that identify the fish in each set to this: 

           [ 
             set age-label (word age-label "+") 
             set the-fish trout with [ ([reach-name] of patches-reach = next-reach) 
and (trout-species = next-species) and (trout-age >= next-age) and (trout-sex = next-
sex) ] 
           ] 
           [ set the-fish trout with [ ([reach-name] of patches-reach = next-reach) 
and (trout-species = next-species) and (trout-age = next-age) and (trout-sex = next-
sex) ] 

           ] 

We also must add sex to the breakout variables printed out: 

              file-print csv:to-row (list formatted-sim-time is-this-a-census-date? 
light-phase next-reach next-species next-sex age-label 

Finally, we need to close the new loop created by the new foreach statement, at the end of the 

code for this output file: 

                ) ; End of output list 
           ] ; foreach age-class 
          ] ; foreach trout-sex 
        ] ; foreach species-list 
      ] ; foreach reach-names 
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16.3 Events output 
The two events output files simply report the state of a trout or redd when some event happens to 

it (Sect. 12.2). The code design makes it easy to report more kinds of events in these files. 

Searching the code for “save-event” finds statements such as these: 

 save-event "died of high temperature" 

and 

 save-event (word "lo-temp killed " eggs-died " eggs") 

Each such statement creates a line of output in one of the events output files: the inSTREAM 

code determines whether a redd or a trout executed the statement, then writes its state variables 

and the text in the save-events statement to the appropriate output file. (The code (word ...) 

creates a text string by concatenating several strings and numbers so it says, in the above 

example, how many eggs died of low temperature mortality.) 

Users can easily have these files report additional events by simply inserting the statement save-

event "text identifying the event type" in code executed by a trout or a redd. For example, 

when a female trout spawns it uses this code to tell its male mate to record that it spawned this 

season and reduce its weight: 

      ask max-one-of potential-mates [trout-length] 
      [ 
        set trout-spawned-this-season? true 
        set trout-weight trout-weight * (1.0 - (item trout-spp-index trout-spawn-wt-
loss-fraction)) 
      ] ; ask mate 

We could make the male mate record its spawning event this way: 

      ask max-one-of potential-mates [trout-length] 
      [ 
        set trout-spawned-this-season? true 
        set trout-weight trout-weight * (1.0 - (item trout-spp-index trout-spawn-wt-
loss-fraction)) 
        save-event "male spawned" 
      ] ; ask mate 

(We put the save-event statement after the statement causing spawning weight loss so that the 

events output will report the male’s length and weight after this weight loss.) 

In adding events to be reported in this way, be very careful not to save events that happen 

extremely frequently. For example, saving events that trout do every time step (feeding, growing, 

surviving) would make the trout events output file extremely large and cumbersome. 

16.4 Modifying secondary output files 
Users may also need to modify inSTREAM’s secondary output files (Sect. 12.3). The individual 

fish and individual cell output files are coded like the main population output files: the file 

headers are written in the procedure build-output-file-named while the output is written in 

update-output. Therefore, the above guidance for modifying the population output files also 

applies to these files. 
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The individual cell output file by default only produces output for cells that are not dry (their 

depth is greater than zero). There are comments in the update-output code for this file that tell 

how to instead report output for all cells. 

The “debug” output files are not produced by build-output-file-named and update-output. 

They are instead each written within the procedure that implements the submodel they report on. 

The code for a debug file can be found by searching the code (control-F) for the parameter that 

turns the file on and off. For example, to modify the debug output for redd survival, search the 

Code tab for its switch parameter debug-redd-survival?. This search will take you to the 

beginning of the procedure redd-survive, where you will find code to both create and write to 

the file. Adding a variable to these output files requires two steps. First is adding a column label 

to this code that creates the file and writes its headers: 

    if not file-exists? debug-redd-survival-file-name 
    [ 
      file-open debug-redd-survival-file-name 
      file-print (word "InSTREAM 7 redd survival test output file, Created:," date-
and-time  ",Values are *daily* survival rates") 
      file-type "redd,species,reach,temperature,flow,depth,is-flow-peak?,scour-param," 
      file-print "s-lo-temperature,s-hi-temperature,s-dewater,s-scour" 
      file-close 
    ] 

(The command file-type writes part of a line, not including a line-end; file-print includes a 

line-end character.) The second step is adding the new variable to the list of those reported, in 

this statement: 

    file-print csv:to-row (list 
      who 
      redd-species 
      [reach-name] of patches-reach 
      [reach-temperature] of patches-reach 
      [reach-flow] of patches-reach 
      depth 
      ... 
    ) 

16.5 Modifying graphical output 
NetLogo makes it easy to add graphical output to the Interface tab. Built-in tools (“widgets”) for 

observing models include line plots, histograms, “monitors” that each display the current value 

of one model variable or piece of code that calculates a value (e.g., sum [trout-superind-rep] 

of trout), and “outputs”—windows that the model can write to. InSTREAM 7 is normally 

distributed with an example line plot. NetLogo comes with thorough documentation of how to 

add and use its display widgets; Chapter 9 of Railsback and Grimm (2019) provides additional 

guidance, especially for histograms. We add the following guidance specific to inSTREAM. 

NetLogo allows users to put the code that updates a widget directly in the widget. For example, 

when you add a plot to the Interface, NetLogo provides a menu with example code statements 

that tell the widget what to plot. We strongly discourage this and highly recommend (a) deleting 

all code from the display widgets and instead (b) adding code to update the widget to the existing 

display code in the procedure update-outputs, using the existing plot code as an example. 

(Railsback and Grimm 2019 explain the reasons for this recommendation.) If a plot does not look 

right, edit it on the Interface and look for any code that needs to be deleted. 
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We do not recommend using “monitor” widgets because they automatically update several times 

per second. Therefore, they can consume substantial computer resources, and there typically is 

no need for such rapid updates. Instead, add code to the update-outputs procedure that writes to 

an Output. 

When writing output code that reports trout abundance, remember the caution about 

superindividuals in Sect. 16.1. Unfortunately, the use of superindividuals makes it difficult to 

produce accurate histograms for trout with length less than the parameter trout-superind-max-

length. NetLogo makes it very easy to produce histograms for trout variables by using 

statements such as histogram [trout-length] of trout. However, the histogram will reflect the 

number of trout entities without considering how many individuals each one represents. The only 

simple ways of dealing with this are to either not use superindividuals or simply be aware that 

histograms under-represent small trout by counting each superindividual as one trout. 

It could be tempting to use the BehaviorSpace output variables (Sects. 15.3, 16.6) in plots and 

outputs, but that will not work without a small code change. Near the end of update-outputs is 

this statement: 

 
  ; Update BehaviorSpace outputs, if this is a BehaviorSpace experiment 
  if behaviorspace-run-number > 0 [ update-behaviorspace-outputs ] 
 

To use the BehaviorSpace outputs in plots, delete that statement and instead add a statement at 

the beginning of the procedure: 

 
 to update-output 
  ; Observer procedure to update graphics and write file output 
  update-behaviorspace-outputs 

This change will update the BehaviorSpace outputs every time step, which, of course, requires 

additional computations. 

16.6 Modifying BehaviorSpace outputs 
In Sect. 15.2 we show how BehaviorSpace can output any kind of model result if the model code 

is programmed to calculate that result as a global variable. Therefore, when we want additional 

kinds of output from BehaviorSpace we typically need to add global variables and code to give 

them the values we want. Here we provide examples of doing this. 

The BehaviorSpace setup example in Sect. 15.2 includes output of trout abundance and mean 

length for each of three age classes. We modify these outputs to get separate results for each 

species, for a model representing Rainbow and Brown Trout.  

First we need to create global variables for all the results we want. All the global variables are 

defined near the top of the Code tab. In the long list of global variables is a group identified 

specifically as BehaviorSpace outputs: 

  ;; BehaviorSpace outputs, updated in update-BehaviorSpace-outputs.  
  age-0-abund       ; Abundance of all age 0 trout, regardless of species 
  age-1-abund       ; Abundance of all age 1 trout 
  age-2+-abund      ; Abundance of all trout age 2 and older 
  age-0-length      ; Mean length of all age 0 trout, all species; blank if none 
  age-1-length      ; Mean length of all age 1 trout, all species; blank if none 
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  age-2+-length     ; Mean length of all age 2 and older trout, all species;  

To get separate results for the two species, we need to change these to (this is one place where 

species names must be coded in): 

  ;; BehaviorSpace outputs, updated in update-BehaviorSpace-outputs.  
  RT-age-0-abund       ; Abundance of age 0 Rainbow Trout 
  RT-age-1-abund       ; Abundance of age 1 Rainbow Trout 
  RT-age-2+-abund      ; Abundance of Rainbow Trout age 2 and older 
  RT-age-0-length      ; Mean length of age 0 Rainbow Trout; blank if none 
  RT-age-1-length      ; Mean length of age 1 Rainbow Trout; blank if none 
  RT-age-2+-length     ; Mean length of age 2 and older Rainbow Trout; blank if none 
  BT-age-0-abund       ; Abundance of age 0 Brown Trout 
  BT-age-1-abund       ; Abundance of age 1 Brown Trout 
  BT-age-2+-abund      ; Abundance of Brown Trout age 2 and older 
  BT-age-0-length      ; Mean length of age 0 Brown Trout; blank if none 
  BT-age-1-length      ; Mean length of age 1 Brown Trout; blank if none 
  BT-age-2+-length     ; Mean length of age 2 and older Brown Trout; blank if none 

Then we need to modify the code that calculates the value of these variables, which is at the end 

of the Code tab in a special procedure called update-behaviorspace-outputs. We replace the 

code that calculates abundance and mean length by age class with the following code, which 

should be self-explanatory (the NetLogo command let creates a new temporary variable, while 

set changes the value of an existing variable—here, the global variables we created above). The 

case-sensitive species names used here must exactly match those in the parameter file. 

    let RT-age-0s trout with [trout-age = 0 and trout-species = "Rainbow"]  
    let RT-age-1s trout with [trout-age = 1 and trout-species = "Rainbow"] 
    let RT-age-2s trout with [trout-age >= 2 and trout-species = "Rainbow"] 
    let BT-age-0s trout with [trout-age = 0 and trout-species = "Brown"] 
    let BT-age-1s trout with [trout-age = 1 and trout-species = "Brown"] 
    let BT-age-2s trout with [trout-age >= 2 and trout-species = "Brown"] 
 
    set RT-age-0-abund sum [trout-superind-rep] of RT-age-0s 
    set RT-age-1-abund sum [trout-superind-rep] of RT-age-1s 
    set RT-age-2+-abund sum [trout-superind-rep] of RT-age-2s 
    set RT-age-0-length ifelse-value (any? RT-age-0s) 
      [mean [trout-length] of RT-age-0s] [""]   ; Mean length; blank if none 
    set RT-age-1-length ifelse-value (any? RT-age-1s) 
      [mean [trout-length] of RT-age-1s] [""] 
    set RT-age-2+-length ifelse-value (any? RT-age-2s) 
      [mean [trout-length] of RT-age-2s] [""]  
 
    set BT-age-0-abund sum [trout-superind-rep] of BT-age-0s 
    set BT-age-1-abund sum [trout-superind-rep] of BT-age-1s 
    set BT-age-2+-abund sum [trout-superind-rep] of BT-age-2s 
    set BT-age-0-length ifelse-value (any? BT-age-0s) 
      [mean [trout-length] of BT-age-0s] [""]   ; Mean length; blank if there are none 
    set BT-age-1-length ifelse-value (any? BT-age-1s) 
      [mean [trout-length] of BT-age-1s] [""]  
    set BT-age-2+-length ifelse-value (any? BT-age-2s) 
      [mean [trout-length] of BT-age-2s] [""]  

After these changes, you can add all the output variables to the reporters used to measure your 

BehaviorSpace experiment (Figure 66). 
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Figure 66. BehaviorSpace experiment setup with additional output variables reporting separate 

results for Rainbow and Brown Trout. 

17 Troubleshooting Guide 
Here we maintain a list of problems often encountered with the inSTREAM 7 software, with 

potential solutions. Additional troubleshooting information may be available at the inSTREAM 

web site described in Sect. 1.1. 

Symptom: When I try to open and set up inSTREAM, I get an error message saying that 

my model is too large to run in the memory available to NetLogo. 

(This issue and the solution presented here are also addressed in the Frequently Asked Questions 

section of NetLogo’s User Manual.) By default, NetLogo allocates one gigabyte of RAM to itself 

when it starts up. This amount can be too small when modeling large spaces or when the value of 

world-resolution is too small. See Sect. 14.1.5 for information on setting world-resolution to an 

appropriate value. 

Many inSTREAM users will need to increase the memory allocation to NetLogo. Doing so can 

make larger BehaviorSpace experiments feasible; and (on at least some hardware) NetLogo can 

become very slow when it needs most of the available memory. To allocate more memory to 

NetLogo, go to the NetLogo program’s app directory (in Windows, it is typically C:\Program 

Files\NetLogo 6.2\app) and find a file named NetLogo.cfg. Open this file in a text editor—you 

will likely need administrator privileges to change this file, so open the editor in administrator 

mode—and find these lines: 

[JVMOptions] 

-Xmx1024m 
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The second of these lines allocates one gigabyte (1024 megabytes) of RAM to NetLogo. Modern 

computers typically have much more RAM than this available; you can change this parameter to 

a substantial fraction (e.g., ¼) of your computer’s total RAM. One limitation to remember is that 

if you typically run several copies of NetLogo at the same time (e.g., running several projects), 

each will use up the allocation set here. To set the RAM allocation to, e.g., 4 gigabytes, 

use -Xmx4096m. For a high-performance computer that lets you execute dozens of BehaviorSpace 

runs at once, you may need to set the allocation to 10 or 20 gigabytes. 

(This RAM allocation applies to each instance of NetLogo. If you open several projects, each in 

its own NetLogo window, each will use the amount of RAM specified in the NetLogo.cfg file. 

Consequently, making this allocation large can limit how many copies of NetLogo can be open 

at once.) 

Symptom: When I try to set up inSTREAM, I get an error statement indicating there were 

no wet cells at initialization. 

This error statement is designed to make sure that, on the first simulated day, initial trout have 

wet cells to occupy. Occasionally, after editing the parameter file in NetLogo, this error 

statement mysteriously occurs without justification. Simply click the setup button again and the 

error should not recur (unless there is a real problem with initialization). 

Symptom: When I set up inSTREAM I get an error statement that includes:  
OF expected input to be a turtle agentset or turtle but got the number 0 

instead. 

 

This error can be caused by the value of the parameter world-resolution being too small; see 

Sect. 14.1.5 for guidance on setting its value. 

Symptom: When I click on the setup button, it takes an extremely long time for the 

computer to finish reading GIS files and building cells. 

You may also get error statements indicating that NetLogo ran out of memory while the 

executing GIS:APPLY-COVERAGE. This stage of setup can take a long time (while using all your 

computer’s processors) when simulating a large reach (or reaches). However, this problem is 

more likely to result from using a value of world-resolution that is too small. See Sect. 14.1.5 

about finding a good value of this parameter. 

Symptom: When I set up inSTREAM I get an error statement that includes:  
error (IllegalArgumentException) 

 while observer running ASK 

  called by procedure SET-UP-TIME 

  called by procedure SETUP 

  called by Button 'setup' 

 

NetLogo is unable to supply you with more details about this error.  Please 

report the problem at https://github.com/NetLogo/NetLogo/issues, or to 

bugs@ccl.northwestern.edu, and paste the contents of this window into your 

report.  

 



 

202 

 

java.lang.IllegalArgumentException: Invalid format: "1/1/1989" is too short 

 

This error occurs when the first column of at least one row of a time series input file (Sect. 13.5) 

is not in the proper date-time format. This often happens when software used to maintain the file, 

such as Excel, changes the date and time to its default format when you open the file. You may 

have to re-open the file, set the date-time format manually, and re-save the file. 

Symptom: When I set up inSTREAM I get an error statement that includes: 
java.lang.IllegalArgumentException: Invalid format: "; Flow input..." 

where the text in quotation marks is a comment in my time series input file. 

This error is because a quotation mark precedes the semicolon that identifies comment lines at 

the top of this file. This file is in CSV format, and the standard for CSV files includes that any 

values can be inside quotation marks. Some software therefore puts quotation marks around text 

values when saving a file in CSV format. However, the code in inSTREAM 7 that reads time 

series input files does not fully comply with this standard and cannot accept quotation marks. 

(This problem may be corrected in future releases.)  

Simply edit the input file in a text editor (not Excel) and delete all quotation marks. 

Symptom: When I set up inSTREAM I get an error message that reads: 

error (ArrayIndexOutOfBoundsException) 

 while observer running ASK 

  called by procedure SET-UP-TIME 

  called by procedure SETUP 

  called by Button 'setup' 

... 

java.lang.ArrayIndexOutOfBoundsException: 0 

 at 

time.datatypes.LogoTimeSeries.parseTimeSeriesFile(LogoTimeSeries.java:152) 

 at time.datatypes.LogoTimeSeries.<init>(LogoTimeSeries.java:39) 

 at 

time.primitives.TimeSeriesPrimitives$TimeSeriesLoadWithFormat.report(TimeSeri

esPrimitives.java:150) 

This error is probably because the time series input file contains blank lines or blank columns. 

When input files are maintained or edited in Excel and then saved in CSV format, Excel very 

often adds blank lines or columns that cause this problem. 

Open the file in a text editor (not Excel) and remove extra lines, including any rows that contain 

only commas—most likely, at the end of the file. Extra columns appear as extra commas at the 

ends of data lines. Use search and replace to find and delete any pairs of commas with nothing 

between them (replace ",," with ""). 

Symptom: When I set up inSTREAM I get an error message that reads: 

Extension exception: Extension could not parse input: ; (text from time 

series input file header rows)(M/d/yyyy H:mm) 

error while reach 1 running TIME:CREATE-WITH-FORMAT 
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or 

Fish initialization file CC3A-InitialPopulations.csv has invalid fish age in 

row: [; Trout initialization input for InSTREAM-7      ] 

or some other error indicating that inSTREAM could not read an input file. 

These error messages indicate that NetLogo could not read an input file properly. First, check for 

obvious mistakes such as missing semicolons at the start of comment lines. But these errors also 

commonly occur the file was saved in Excel’s “CSV UTF-8” file type, which NetLogo cannot 

read. Instead, save the file in “CSV (Comma delimited)” file type. 

(NetLogo actually requires text input files to be in UTF-8 encoding, but Excel’s “CSV UTF-8” 

option apparently actually uses format called “UTF-8-BOM”, which NetLogo cannot read. You 

can open a file in Notepad++, a widely used free editor for plain text, and use Notepad++’s 

“Encoding” menu to see a file’s format and change it to “UTF-8”.) 

Symptom: InSTREAM executes setup but when I start a simulation I get an error message: 

'temperature' is not a column in this time series 

error while reach 0 running ERROR 

(or 'flow' or 'turbidity'). However, my time series input file includes this variable. 

This error message occurs when there is a space or other invisible character in one of the column 

labels.  Open the time series input file in a text editor (not Excel) and delete any spaces, tabs, 

etc., within the column labels. The row of column labels must look exactly like this: 

Date,flow,temperature,turbidity 

(except that the order in which flow, temperature, and turbidity appear can vary). 

Symptom: When I set up inSTREAM I get an error message that reads: 

Depths file Upstream-Depths.csv has a row with cell ID not in GIS file:  

error while reach 0 running ERROR 

  called by procedure READ-HYDRAULICS 

If the error statement does not provide an ID code for the problem cell, this error is probably 

because of blank lines at the end of a depth or velocity input file (Sect. 13.3). Open the file in a 

text editor (not Excel) and remove extra lines: go to the end of the file and delete any lines that 

contain only commas.  

Symptom: When I try to set up inSTREAM, I get an Extension exception called 

“Unsupported projection”.  

This error means that you saved your GIS shapefile using a projection that is not supported by 

NetLogo’s GIS extension. See Sect. 13.2 for information on projections and ways of overcoming 

this problem. If your shapefile uses a projection similar to one of the supported projections, you 

may be able to trick inSTREAM into accepting it by editing the projection file (the file in your 
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shapefile directory with the extension .prj). In that file, find the projection name (e.g., 

PROJECTION["Transverse_Mercator"]) and change the name of the projection to one of those 

supported by the NetLogo GIS extension. Save the file and see if inSTREAM can now use your 

shapefile. If not, you will need to save the shapefile with one of the projections supported by 

NetLogo. 

Symptom: I ran a BehaviorSpace experiment using replicates, but the “replicates” 

produced exactly the same results. 

This is most likely because you used a value of random-seed other than zero, in which case your 

value of random-seed supersedes BehaviorSpace.  

There are two ways to get replicates—multiple model runs with all parameters and inputs the 

same but different random number sequences—in BehaviorSpace experiments. The simplest way 

is to set random-seed on your model Interface to zero, and then select the number of replicates 

you want in the BehaviorSpace experiment setup. The only limitation of this method is that you 

can never exactly reproduce the experiment because you have no control over the random 

number generator. 

The second method is to set the value of random-seed as a variable you vary in the 

BehaviorSpace experiment. Simply add a line to the “Vary variables as follows” box that 

contains ["random-seed" 3 4 5 6 7]. (Replace 3 4 5 6 7 with a sequence of your lucky 

numbers, with as many numbers as you want replicates.) Then each scenario in the experiment 

will be repeated with different random numbers, and the experiment can be exactly reproduced 

because you know the random seed for each model run. (If also using the year shuffler, see Sect. 

15.5 about how random number seeds affect it.) 

Symptom: I changed some parameter values and then ran a BehaviorSpace experiment, 

but BehaviorSpace seemed to use the old parameter values. 

NetLogo and especially BehaviorSpace can sometimes get confused about changes in the 

parameter file and use old values (as discussed in Sect. 14). To ensure that edits in the parameter 

file are saved and used in all future model runs, save both the parameter file and the NetLogo 

file, close them both, and re-open the NetLogo file before running BehaviorSpace.  

Symptom: My BehaviorSpace output always reports zero abundance for one (or several) 

species, when I use output variables like those described in Sect. 16.6. 

This error is most likely because a species name in the code that calculates the output (as 

illustrated in Sect. 16.6) does not exactly match the species name in the parameter file (parameter 

species-list; Sect. 14.3). These names are case sensitive. 

Symptom: InSTREAM halts with an error statement saying velocity was interpolated to a 

negative value at one cell, even though it was simulating a period of high flow. 

InSTREAM’s method for calculating velocity from flow (Sect. 9.3) can produce a negative 

velocity when extrapolating to a flow higher than any in its lookup table. This can happen when, 

in the lookup table imported from a hydraulic model (sects. 9.2, 13.3), there are cells with lower 
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velocity at the highest flow than at the second-highest flow. In that situation (which is not 

uncommon), the extrapolation method produces velocities that get lower, and potentially 

negative, as flow increases above the highest lookup-table flow.  

The best solution to this problem is to make sure the hydraulic input lookup tables cover the 

entire range of flows used in the inSTREAM simulations, by running the hydraulic model at 

higher flows. If that is not feasible, there is a work-around: open the velocity lookup table in 

spreadsheet software and a use spreadsheet formula to identify the cells that have velocity at the 

highest flow less than their velocity at the second-highest flow. For only those cells, replace the 

highest-flow velocity with the velocity at the second-highest flow. This edit will cause 

inSTREAM to use the same velocity for any flow above the second-highest in the lookup table.  

Symptom: InSTREAM does not create any fish during setup, or it does not initialize all 

species, or put fish in all reaches. 

These problems are most likely due to a mistake in the fish initialization input file (Sect. 13.4). If 

the name of the trout species or of the reach does not exactly match (including capitalization) the 

species or reach names in the parameter file, then no fish will be created and no error statement 

raised. 

Symptom: No fish spawn during simulations. 

If a simulation runs normally but no trout ever spawn (or spawning is rarer than expected), it is 

almost certainly because the spawning criteria defined in Sect. 9.27 are rarely or never met. 

Often, the cause is an inappropriate value for the maximum flow for spawning (Sect. 9.27.5) or 

temperatures that are rarely within the allowed range (Sect. 9.27.4). Comparing the parameters 

for these spawning criteria to the time series inputs during the spawning period should make it 

obvious which criteria prevent spawning. 

Users can also diagnose this problem by turning on the optional output file for spawning 

readiness, as explained in Sect. 12.3. This output reports why each simulated female trout does 

not spawn on each day. Be aware that this output can be very large. 
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Part IV: Application Guide 

18 Introduction and Overview of the InSTREAM 7 Application Guide 

18.1 Application objectives 
Part IV of the inSTREAM 7 documentation provides guidance on applying the model to study 

sites and questions. Applications of inSTREAM best start with one or several specific 

objectives—questions of management or research relevance that the model application is 

designed to address. A clearly stated objective is essential for making good decisions about 

exactly how to apply any model (e.g., Sect. 25 discusses study designs for different objectives). 

Sects. 1.2 and 3.1 identify general kinds of objectives that inSTREAM is designed for; here we 

reiterate common application objectives.  

Instream flow and temperature assessment has always been a primary purpose of inSTREAM. 

This objective typically is addressed by simulating alternative flow and temperature management 

scenarios and their effects on trout populations. In addition to using inSTREAM to compare and 

evaluate pre-determined management scenarios, simulation experiments can also contribute to 

the design of effective and efficient management by providing better understanding of site-

specific effects of flow and temperature. 

Design and evaluation of habitat restoration projects has been another common application of 

inSTREAM and related models. For example, Railsback et al. (2013) contrasted simulated 

salmon spawning and rearing success at two sites, one with and one without extensive habitat 

restoration. Other, unpublished, applications have simulated alternative channel restoration 

concepts to assess their relative benefits, prior to final design and construction.  

Its ability to assess and compare the relative value of different potential management actions has 

proven a particularly useful characteristic of inSTREAM. Railsback et al. (2013) included, as 

part of their evaluation of a restoration project, simulation analyses evaluating the relative 

potential of improving salmonid populations by manipulating flow, summer or winter 

temperatures, feeding and hiding cover, and spawning gravel availability. 

InSTREAM has also proven useful for a variety of other management and research objectives, 

including assessment of alternative angler harvest regulations (Ayllón et al. 2016, 2018, 2019a, 

2021), prediction of climate change effects (Ayllón et al. 2016, 2019b), understanding 

watershed-level effects of movement barriers (Harvey and Railsback 2012, 2021), exploring the 

population-level effects of turbidity (Harvey and Railsback 2009), assessing population and 

community effects of sublethal contaminants (Forbes et al. 2019), and understanding the concept 

of “food limitation” (Railsback and Harvey 2011). 

18.2 Typical application steps and summary of data requirements 
The rest of Part IV is dedicated to guidance on the individual steps of applying inSTREAM. This 

section provides an overview of these steps and the input needed for each. 

Regardless the specific study objectives, inSTREAM 7 applications typically involve: 
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1. Deciding how many reaches to model and where to place them.  

2. Developing time series of the variables that drive simulations: flow, temperature, and 

turbidity. These time series typically are daily values for sufficient years to represent the 

scenarios being evaluated. Important differences between inSTREAM and simpler flow 

evaluation methods include that inSTREAM: considers the entire flow regime, not just 

minimum flows; considers year-round conditions instead of only the times (e.g., summer) 

presumed most stressful; and considers the interacting effects of flow, temperature, and 

turbidity. Consequently, it requires these time-series inputs for each reach and scenario. 

The inputs are typically developed from a combination of existing gages, site-specific 

data collection, and modeling.  

3. Assembly or collection of site-specific trout population data. InSTREAM is not heavily 

dependent on site-specific population data and can be used without it, but such data are 

desirable for defining initial conditions and calibrating the model. 

4. Hydraulic modeling, including collection of reach bathymetry and calibration data. 

InSTREAM can be used with any two-dimensional or pseudo-two-dimensional hydraulic 

model that simulates how depth and velocity vary over space with flow.  

5. Cell delineation and estimation of static habitat variables. The boundaries of the habitat 

cells that represent within-reach variation in habitat must be defined, either in the field or 

via GIS. Then users must develop values of each cell’s variables representing velocity 

shelter for drift feeding, distance to escape cover, number of hiding places, and spawning 

gravel availability. Evaluating these variables typically requires a combination of field 

observations and GIS analysis. 

6. Evaluation of site- and species-specific parameter values. InSTREAM has many 

parameters, but relatively few have site- or species-dependent values that need to be 

reconsidered in each application.  

7. Model calibration. Calibration usually requires a few simple simulation experiments that 

vary a small number of particularly important yet uncertain parameter values and 

compare results to observed trout abundances and sizes. 

8. Designing, executing, and analyzing the simulation experiments that address the study 

objectives. This is the most important step and requires considerably more time and effort 

than analysis of simple models such as PHABSIM. InSTREAM produces many kinds of 

output; understanding how and why its outputs respond takes work, but typically teaches 

us a great deal. 

19 Study Reach Selection and Layout 
Selecting the number, location, and size of study reaches is typically the first critical step in 

applying inSTREAM. The following considerations provide some guidance. Here, “site” refers 

to the longer stream length (or network) that the model represents. One or more reaches are often 

used to represent a site: for example, three reaches might represent a site that extends from a 

reservoir downstream to the confluence with a larger stream. Reach selection is typically viewed 

as a tradeoff between the benefits of representing more habitat and its costs (in money and time) 

for data collection, hydraulic modeling, and executing and analyzing simulations.  

19.1 Reach selection 
Selecting the number, size, and location of reaches requires judgment and consideration of the 

questions that inSTREAM is being used to address. We addressed this issue in an analysis of 
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inSALMO (a version of inSTREAM for salmon) applied to 12 sites on one stream (Railsback et 

al. 2015). That analysis found that some model processes such as effects of temperature regimes 

are relatively insensitive to spatial extent because they do not vary much over space, while other 

mechanisms such as growth and survival are highly dependent on local habitat conditions and 

hence sensitive to how thoroughly space is represented. Relatively long reaches that typify 

overall habitat, combined as needed with small reaches that represent unique habitat “hot spots”, 

were found effective at representing an entire system. Predictably, the influence of stochasticity 

on population dynamics varies inversely with reach size.  

If the purpose of an inSTREAM application is to assess effects of river management—especially, 

flow, temperature, or turbidity regimes—then representativeness is a primary consideration in 

choosing the spatial extent: does the simulated habitat capture the range and approximate 

distribution of habitat types of the real stream? 

If instead the purpose is to evaluate or design habitat at one site, such as a channel restoration 

site, then the model’s spatial extent can be restricted to that site (e.g., Railsback et al. 2013). In 

such cases, though, the model’s results will not reflect the buffering effects of movement into 

and out of the site and therefore can provide an index of site habitat quality, but not useful 

predictions of abundance. 

InSTREAM can also be used to assess watershed-scale effects of factors such as turbidity and 

passage barriers (e.g., Harvey and Railsback 2007, 2012). In such applications, the primary 

spatial extent concerns are to capture the range and distribution of habitat across the watershed, 

in its various tributary sizes, and to represent enough space to prevent exaggeration of local 

extinction frequency. 

For studies intended to assess the effects of river management, including instream flow studies, 

the primary consideration in selection of study reaches should be that reaches adequately 

represent the habitat diversity of the entire site. The number and location of reaches can be 

chosen to include any major differences in channel morphology within the site. Ideally, reaches 

will include all the major habitat types (pools, riffles, cascades, etc.) and also all cover features 

(wood, undercut banks, aquatic and overhead vegetation) in roughly the proportions they occur 

in the full site.  

Habitat need not be excluded from the study reach because it has complex hydraulics that make 

hydraulic modeling difficult or uncertain. Errors due to modeling complex hydraulics are likely 

to be less important than those that would result from ignoring important habitat. 

Spawning habitat deserves consideration in reach selection. Because inSTREAM does not 

incorporate immigration (except for movement among reaches), it can exaggerate the variability 

of annual reproduction when a site is represented by reaches containing little spawning habitat. 

The number of adults that spawn is modeled stochastically, and one often-important cause of 

redd mortality (scour) is also highly stochastic. This stochasticity tends to be higher for smaller 

reaches with fewer trout or little spawning habitat. Exaggerated variability in reproduction may 

particularly affect studies that address population persistence. 
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19.2 Reach layout in inSTREAM 
Sites represented by multiple reaches can be represented as one inSTREAM project or as 

multiple projects. Isolated reaches that fish cannot move among can be represented as separate 

projects with their own inputs and calibration. Reaches that model trout can move among are 

best represented within a single project. Doing so requires assembling a GIS shapefile that 

includes all the reaches in a project (Sect. 13.2).  

Laying out a site’s reaches in GIS requires translating and perhaps rotating them so that their 

ends coincide (as in Figure 44). InSTREAM’s methods for determining how far model trout can 

move in habitat selection use distances in the GIS space, so multiple reaches must be placed 

artificially adjacent to each other in that space if simulated trout are to be able to move among 

reaches. The distance between reaches in the inSTREAM input can be manipulated to affect 

what size trout can move among reaches. If the upstream end of one reach is dragged in GIS to 

be immediately adjacent to the downstream end of another reach, then all but the smallest fish 

will be able to move among the reaches. If the reaches are placed farther apart, then only larger 

fish will be able to move between them because the distance a trout can move increases with its 

length (Sect. 9.13.1). 

20 Time Series Inputs 
Time series of daily values of flow, temperature, and turbidity are the main environmental 

“drivers” of inSTREAM. If such time series are not already available, they must be developed, 

which usually requires data collection. Therefore, attention should be given to this input from the 

start of a model application. 

Unlike previous versions, inSTREAM 7 does not require a specific (daily) temporal resolution in 

the time series inputs; input can be hourly, daily, weekly, or at irregular intervals. The model 

simply uses the input from the time closest to the middle of each time step (Sect. 8.1). However, 

all three variables are input at the same resolution.  

InSTREAM simply reads in values for the time series inputs; these values must be prepared by 

the user for each reach and for each scenario when scenarios differ in the time-series inputs (e.g., 

when contrasting alternative instream flow regimes). Time series inputs are usually developed 

through a combination of collecting field data and other methods such as estimating flows with a 

reservoir or hydrologic model or by adjusting them from a nearby gage; modeling water 

temperature (for scenarios different from observed conditions) using physics-based simulation or 

statistical modeling; and statistical modeling of turbidity as a function of flow. Such methods are 

widely used; here, we provide guidance specific to inSTREAM. 

If the model application includes comparison of alternative flow and temperature regimes, 

presumably including new regimes that have not occurred in reality, then some kind of modeling 

is necessary to develop the input representing each alternative regime. Predicting flows and 

temperatures under different management alternatives is a standard part of instream flow 

assessment, but often the focus is only on specific times of year, such as when flows are lowest 

and temperatures highest. Because inSTREAM evaluates year-round regimes, the models and 

data used to produce inputs must adequately represent all seasons and the full range of conditions 

that can be expected.  
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Turbidity is generally not monitored as easily or commonly as temperature or flow, and it is 

often tempting to ignore turbidity. (Input for projects with negligible turbidity, or with turbidity 

intentionally neglected, is discussed in Sect. 8.1.) However, the strong and well-defined effects 

of turbidity on trout feeding and predation risk are included in inSTREAM; turbidity can 

strongly affect predicted trout population responses to flow, temperature, and other habitat 

characteristics. These effects are most sensitive to turbidity values in an intermediate range of 

approximately 5 to 50 NTU; below that range turbidity has little effect, while effects become 

asymptotic at high values. Except for sites with consistently low turbidity (e.g., downstream of a 

large reservoir), it is important to develop reasonably accurate input for this intermediate range.  

Where turbidity is caused primarily by suspended sediment, turbidity can be modeled as an 

increasing function of flow; we often assume turbidity is proportional to flow (e.g., Harvey and 

Railsback 2009). In some systems, however, phytoplankton can elevate turbidity at low flows. 

Turbidity can also vary seasonally, as erosion rates, algal production, and sediment settling rates 

vary with factors such as temperature and snow cover. Therefore, collecting grab samples over a 

wide range of flows and seasons is better than having no site-specific turbidity information at all. 

Grab samples can be used to fit rough but useful models of how turbidity varies with flow, 

season, and temperature. 

21 Hydraulic Modeling and Input Preparation 

21.1 Hydraulic modeling considerations 
The hydraulic input used by inSTREAM 7 (Sect. 13.3) can be developed in many ways. We 

expect that it will most commonly be produced via two-dimensional hydrodynamic modeling, as 

that approach is now widely used in river management. However, the input could also be 

developed using traditional transect-based, pseudo-two-dimensional models such as the original 

PHABSIM hydraulic models, or even from direct field measurements. Because river hydraulic 

modeling expertise is now relatively widespread, here we focus on issues specific to inSTREAM 

and two-dimensional hydraulic modeling. 

Because inSTREAM models the full flow regime, the hydraulic input must represent not just 

minimum or low flows but also the moderate and high flows represented in the input scenarios. 

For most inSTREAM applications, the emphasis remains on lower flows, so hydraulic model 

calibration and validation is also focused on lower flows. Often, also, cell-scale hydraulics are 

more challenging to model at lower flows, and inSTREAM is likely less sensitive to hydraulics 

at very high flows. However, keep in mind that when inSTREAM simulates flows above (or 

below) those included in the input imported from the hydraulic model, it simply extrapolates cell 

depths and velocities. No matter how uncertain the high-flow calibration of the hydraulic model, 

it is likely more accurate than inSTREAM’s extrapolation; if we must extrapolate to flows above 

(or below) those we have calibration data for, it is likely better to do so with the hydraulic model 

instead of in inSTREAM. Collection of calibration data at moderate and high flows can improve 

inSTREAM applications by providing the ability to model such flows with reasonable accuracy. 

A second hydraulic modeling consideration is that inSTREAM explicitly uses spatial resolutions 

(cell sizes) that are more aggregated than many river habitat hydraulic model calibrations. 

Hydraulic modelers sometimes assume that the finer their hydraulic modeling mesh, the better 
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the model will represent fish habitat; however, that assumption is only true if the biological 

component of the model is explicitly designed for the same resolution. InSTREAM is designed 

for cell depths and velocities to represent averages over relatively large cells, while fine-

resolution habitat elements such as velocity shelter for drift feeding are represented as cell 

parameters that the hydraulic model need not capture.  

One way to match the hydraulic model’s spatial resolution to that of inSTREAM is to use a 

relatively coarse hydraulic modeling mesh, so that mesh elements can correspond with 

inSTREAM cells. Another approach is to model hydraulics at a scale appropriate to represent 

hydraulics well, often finer than the inSTREAM cells, and then use GIS to aggregate hydraulic 

model results into cell-averaged values for inSTREAM. We often model reach hydraulics 

independently, using a relatively fine resolution, before delineating the inSTREAM cells. The 

hydraulic model results can in fact be part of the information used to delineate cells (Sect. 22). It 

is not advisable to use a hydraulic modeling mesh coarser than the inSTREAM cells. 

Finally, in hydraulic modeling keep in mind the potential need to model how bed shear stress 

varies with flow, as part of the redd scour submodel (Sect. 23.1). Some hydrodynamic models 

can be used to estimate the relation between reach-average shear stress and flow needed for that 

submodel. 

21.2 Preparation of hydraulic input 
As input, inSTREAM requires tables of cell depths and velocities at a wide range of flows (Sect. 

13.3). Preparing this input requires selecting the flows and simulating them in the hydraulic 

model. We typically include 20-40 flows in the input tables, spanning the full range of flows that 

could be in the scenarios to be modeled (Sect. 9.3).  

Which flows to simulate in the hydraulic model and include in the inSTREAM input is an 

important decision. In general we include more low flows and fewer high flows in the input, 

because (a) most inSTREAM applications focus on evaluating scenarios that differ in low flows 

(e.g., evaluating minimum flow releases), (b) low flows typically are more common than high 

flows, and (c) as flow increases, depths and velocities usually become more uniform, so 

interpolation between flows becomes less uncertain. A general approach to selecting flows to 

simulate in the hydraulic model is to evenly space them by exceedance values: analyze a historic 

flow record and simulate (e.g.) flows exceeded on 0.1%, 5%, 10%, 15%, 20% ... 95%, and 99% 

of days. 

The final step in hydraulic input preparation is calculating characteristic depths and velocities for 

each habitat cell, for each flow simulated in the hydraulic model. When the hydraulic model 

mesh and the inSTREAM cells are the same, cell values are simply equal to the depth and 

velocity of the corresponding hydraulic model node. However, when the hydraulic model uses a 

finer spatial resolution than inSTREAM does, we must re-scale hydraulic model results to the 

inSTREAM cells. We do this via GIS: overlaying the inSTREAM cells and hydraulic model 

results and calculating a spatially averaged depth and velocity for each cell, at each of the 

simulated flows. GIS offers approaches such as weighing the values from hydraulic model nodes 

by how much of the cell’s area each node represents. 
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22 Cell Delineation and Habitat Variables 
Cell delineation is the task of defining the boundaries of inSTREAM’s habitat cells. A closely 

related task is establishing values of the cell habitat variables that vary among cells but not over 

time (Sect. 4.1.3). 

22.1 Delineating cell boundaries 
The goals in cell delineation are the same regardless the method used. The primary goal is to 

delineate cells that capture important spatial variation in hydraulic conditions and other habitat 

variables as differences among cells, while minimizing variation within each cell. In other words, 

cells should be placed so that each bounds an area of relatively homogenous habitat while sharp 

gradients in habitat occur at cell boundaries. This goal cannot always be achieved where habitat 

gradients are steep, such as along a steeply sloped bank.  

A second important goal is for cell delineation to produce a useful spatial resolution, as discussed 

in Sect. 4.2.1. Cells should be no smaller than necessary to capture important habitat gradients, 

and never smaller than the area over which a large trout or a superindividual representing 

multiple small trout might typically feed: we try to avoid cells less than 2-4 m2 in area. Cells 

smaller than this can cause artifacts in inSTREAM results, and large numbers of unnecessarily 

small cells substantially increase model execution time. 

In traditional instream flow modeling, cells are delineated in the field by placing transects across 

the stream, selecting the cell widths, and assuming the distances upstream and downstream 

represented by the transect. This approach can be used with inSTREAM, especially in 

combination with traditional PHABSIM (Bovee et al. 1998) hydraulic models (Figure 67, top 

panel). Railsback et al. (2009) provide important guidance on this approach, including ways it 

must be used differently for inSTREAM than for PHABSIM.  

InSTREAM, unlike PHABSIM, depends on an explicit map of stream habitat and its spatial 

relations. Modern two-dimensional hydraulic models allow us to produce less distorted maps 

than transect-based approaches. Therefore, most inSTREAM applications now use cells that are 

irregular polygons that follow the actual stream geometry and habitat closely (Figure 67, middle 

panels). 

Polygonal cells that follow actual stream topography and habitat can be difficult and time-

consuming to delineate in the field. With modern GPS equipment the methods described below 

for delineating cells in GIS could also be used in the field, but doing so would require a great 

deal of field time for large sites. Field delineation also makes it infeasible or especially time-

consuming to view results and then correct problems while still in the field. 

The approach we most often use now, especially for large streams, is to delineate cell boundaries 

in GIS while viewing and considering a variety of spatial information. This approach starts with 

assembling GIS coverages of the reach with: 

• Bed topography, such as bed elevation contours; 

• Depth and velocity distributions, as contours or shading of the hydraulic model mesh at 

one or several characteristic flows;  

• High resolution aerial or satellite photography; and 
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• Field observations of cell habitat variables (discussed below). 

An analyst familiar with the site and inSTREAM can then create the habitat cells in the GIS 

while looking at these coverages. We have used two methods. One, illustrated by the second 

panel of Figure 67, is for the analyst to click in the corners (vertices) of each cell polygon. This 

method allows complete control over cell boundaries, but it can be slow and painstaking, and is 

subject to the accidental creation of small sliver cells and small gaps between cells. The second 

method is for the analyst to click in cell centroids and then use the GIS to create cells as Thiessen 

(Voronoi) polygons around those centroids. The analyst must try to place the centroids so that 

the Thiessen polygon boundaries fall near breaks in hydraulic and habitat conditions, and the 

method typically involves trial and error—it is easy to delete a polygon and reposition its 

centroid, then re-create the polygons. The third panel of Figure 67 shows a reach with cells 

created this way. 

Dudley (2018) developed a fourth cell delineation method, specifically for adapting large-scale 

and coarse hydraulic simulations of large rivers to models like inSTREAM. That method 

imposes a uniform cell grid to represent a hydraulic model mesh that typically is coarser (Figure 

67, bottom panel). This method can be useful in the absence of detailed bathymetric and 

hydraulic data, but provides less resolution for representing small areas of important habitat, e.g., 

shallow channel margins for small juveniles. Dr. Dudley (Southwest Fisheries Science Center, 

National Marine Fisheries Service, Santa Cruz, CA) makes software for generating cells 

available as a plugin to the QGIS geographic information software, at 

https://github.com/pndphd/hydro_generator. 

While the number of cells strongly affects model execution time, their shape or complexity has 

no such effect. 
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Figure 67. InSTREAM reaches developed with four alternative cell delineation methods. Top: 

traditional transect method with cells delineated in the field. Second: GIS delineation with cell 

vertices entered manually. Third: GIS delineation with cell centroids entered manually and 

boundaries defined as Thiessen polygons. The top reach is 184 m long, with 167 cells having 

mean area of 19 m2; the middle reach extends 1355 m from east to west with 825 cells averaging 

8.6 m2; and the bottom reach extends 598 m east-west and has 832 cells with mean area of 48 

m2. Bottom: Hexagonal cells produced with the QGIS tools of Dudley (2018). Each cell has an 

area of 20 m2, here shaded by velocity. 
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22.2 Assigning cell habitat variable values 
Four of the habitat variables input for each cell (Table 24; see also Table 3) are based on field 

observations. Sect. 9 describes the effects of these variables; here we provide guidance on 

developing their values. First, we provide general guidance on field estimation of habitat 

variables, then we discuss what to observe for each variable, and finally we provide several 

methods for estimating values via field observation and GIS analysis. 

We recommend linking the tasks of assigning cell habitat variable values and delineating cell 

boundaries: we must assign habitat variable values to each cell, but cell delineation should be 

informed by observations of the habitat variables. 

22.2.1 General guidance on field estimation of habitat variables 

The following advice for estimating habitat variable values in the field is largely based on 

recommendations by Railsback and Kadvany (2004, 2008) for judgement-based evaluation of 

stream habitat. None of the cell habitat variables can be defined very precisely, and variation in 

their values with flow and fish characteristics is ignored by inSTREAM. Therefore, the best way 

to evaluate them is simply by visual estimation by observers experienced with trout feeding, 

hiding, and spawning behavior. However, the following practices can make visual estimation 

more credible and reproducible: 

• Use more than one observer, each with sufficient experience to have a good mental 

model of the kinds of habitat trout use for drift feeding, hiding, and spawning. 

• In advance, thoroughly understand from the model description of Part II and the 

following subsection exactly what each variable means and how it is used. 

• Discuss and define in advance how to interpret cell habitat variables for the study site, 

especially what size fish are represented and what kind of cover they are assumed to use 

for hiding and feeding. Develop a mental model of what each variable represents, in 

advance. 

• Discuss and agree on observed values in the field, instead of having each observer record 

separate values and averaging them later. 

• Focus on estimating cell-average values, recognizing that there is no single “right” value. 

Estimation of habitat variables may best be conducted during low flows when more of the stream 

channel can be waded and observed. However, at extremely low flows many of the cells can be 

dry, which introduces additional uncertainty into the estimates. Estimation of these values can be 

especially challenging in large and turbid streams. 

22.2.2 Cell habitat variables 

Here we remind users what the field-estimated cell habitat variables represent and provide 

information for observing them.  

Cell-escape-dist is a characteristic distance (m) from feeding sites to escape cover (Sect. 9.18.5). 

Trout use escape cover to elude predators by becoming less visible or harder to catch. Escape 

cover can be provided by vegetation, rocks, woody debris, undercut banks, and shade. The value 

of cell-escape-dist for a cell is an estimate of how far a trout would have to move from a typical 

feeding location to the nearest useful escape cover. The nearest cover need not be in the same 

cell.  
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Where escape cover is sparse, this variable can be estimated by identifying likely feeding 

locations and the nearest escape cover, and estimating the distance between them. In places such 

as heavily vegetated floodplains, macrophyte beds, or where crevices are abundant, we often 

assume that escape cover is essentially everywhere and set cell-escape-dist to zero or <1 m. 

Cell-num-hiding-places is the number of places where adult trout can conceal themselves when 

not feeding (Sect. 9.18.6). InSTREAM treats concealment cover as discrete places where trout 

can be visually isolated from each other. The first step in evaluating cell-num-hiding-places is to 

identify a range of trout sizes that values are assumed applicable to. Generally, we recommend 

using a typical size for a small adult trout as the minimum that concealment cover must 

accommodate.  

Concealment cover is typically provided by interstitial space among substrate items and undercut 

banks. Many kinds of cover that can provide temporary escape do not provide concealment over 

longer periods. Estimating the number of hiding places of course requires guesswork because we 

cannot see into hiding places to determine how many fish they could conceal. We typically 

estimate one hiding place for each isolated location (e.g., a boulder that appears to have space at 

its base), and several hiding places for a larger area complex enough to isolate several 

individuals (e.g., an undercut bank with roots).  

Cell-frac-vel-shelter is the fraction (0.0 to 1.0) of the cell providing velocity shelter for drift 

feeding (Sect. 9.13). Velocity shelter is typically provided by large substrate items and 

sometimes by velocity shear zones that allow a trout to swim in lower velocities than it captures 

food from. Defining useful velocity shelter depends on the size of trout being considered: small 

juveniles may gain useful reductions in swim speed from small substrate or bed roughness that 

would not benefit adults. Except for inSTREAM application specifically focused on juvenile 

rearing, we quantify velocity shelter as area that would benefit small adults and larger trout. 

Cell-frac-spawn is the fraction of the cell with substrate suitable for spawning (Sect. 9.29). 

Delineating spawning substrate requires considering both substrate size and the size of substrate 

patches. The range of gravel sizes useful for spawning can depend on spawner sizes and 

(perhaps) substrate availability (Kondolf 2000): ideal spawning gravels are relatively free of 

fines or loose enough that the spawner can clean fines away, large enough to promote interstitial 

flow, and small enough for the female to move. When such substrate is available in relatively 

large beds, cell-frac-spawn can be evaluated as the fraction of a cell within such a gravel bed. 

However, in stream reaches lacking beds of ideal gravel trout may instead spawn in small 

pockets of gravel such as those accumulated behind boulders, which should therefore be captured 

in cell-frac-spawn. 

22.2.3 Methods for observing and assigning values 

Here we describe three methods for collecting field data on habitat variables and using the data 

to assign values to cells. Different methods may be used for different variables. 

Estimating values for each cell in the field. This method relies on field observation instead of 

GIS analysis. Each cell’s habitat variables are evaluated in the field, which requires identifying 

cell boundaries. In fact, this method can combine cell delineation with habitat variable 

evaluation: the field observer team can set cell boundaries and evaluate habitat variables at the 
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same time. This approach is most practical for small reaches and relatively regular cells; we used 

it successfully with transect-based rectangular cells (as in the top panel of Figure 67). However, 

with large reaches of nonuniform cells (the middle panels of Figure 67) the method becomes 

impractical due to the number of cells and the difficulty of identifying their boundaries in the 

field. 

Mapping habitat elements. This method involves mapping specific habitat elements—escape 

and concealment cover, zones of velocity shelter, and patches of spawning gravel—in the field 

and then assigning variable values to cells in GIS. Appropriate GIS methods can vary among 

habitat variables. For example, when the locations of escape cover are mapped, GIS analysis can 

estimate cell-escape-dist for each cell by calculating the distance to nearest escape cover for each 

point in a grid laid over the cell. The values of cell-frac-vel-shelter and cell-frac-spawn can be 

calculated as the fraction of cell area that overlaps mapped areas of velocity shelter and 

spawning gravel. 

Mapping areas of similar habitat. Using this method, field observers map patches of habitat 

that are relatively uniform for the inSTREAM habitat variables, and then estimate variable 

values for each patch. These patches could include, e.g., patches of gravel bar, cobble bed, riffle, 

and boulder garden. Patches can be delineated by collecting GPS locations around their 

perimeter or simply by drawing them on detailed maps or air photos. Then, in GIS, these patches 

are digitized as “habitat variable polygons” and laid over the habitat cells. Cell boundaries can be 

selected or adjusted to coincide with the boundaries of habitat variable polygons, so that cells 

better capture habitat variation.  Cell habitat variable values are assigned as the values of the 

habitat variable polygon that contains the cell centroid. (Habitat variables are typically 

discontinuous, so spatially averaging values may not produce a representative value.) 

This approach of mapping areas of similar habitat has been the most useful for large study sites 

where the other approaches would require excessive field effort. It works best at sites large 

enough to have patches of relatively similar habitat that are substantially bigger than the cells 

and relatively easy to delineate in the field. Another benefit of this approach is that the observed 

habitat variable polygons are useful aids when delineating cells. 

23 Parameter Evaluation 
This section addresses which of inSTREAM 7’s habitat and trout parameters should have their 

values reconsidered and perhaps altered for application of the model to a new site. Only a few 

parameters typically need adjustment. Part II provided guidance on selecting values for 

parameters, with the description of each parameter’s meaning and use. Look here to learn which 

reach and trout parameters should be reconsidered, then find those parameters in Part II 

(especially, Sect. 9) to see how their values are determined. 

Many inSTREAM parameters define functions. Before changing the value of such parameters, 

we strongly recommend users implement the function by itself and fully understand how the 

change affects the function, because modification of parameters can change nonlinear functions 

in unexpected ways. For logistic function parameters, it is easy to implement the function in a 

spreadsheet from the equations in Sect. 2.2.11, plot its output, and view how the function 

changes with parameter values.  
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In fact, a spreadsheet implementation of a logistic function can be very useful for finding 

reasonable parameter values. Users can assume two or more values of the function that seem 

reasonable (e.g., survival of terrestrial predators increased by 50% at a depth of 100 cm and 80% 

at 200 cm), then use a spreadsheet’s “solver” tool to find parameter values that minimize the 

difference between the logistic function’s value (here, relative survival at 100 and 200 cm depth) 

and the assumed values. 

23.1 Reach-specific habitat parameters 
Reach parameters represent reach-specific conditions, so most of them need to be re-evaluated 

when inSTREAM is applied to a new site or reach. Table 31 presents all reach parameters; grey 

shading indicates parameters especially likely to vary among sites. Be aware that the parameters 

typically used to calibrate inSTREAM (Sect. 24) are reach parameters.  

In addition to the reach parameters, three global parameters are also site-specific. The parameter 

latitude is simply the site’s latitude (degrees North); all reaches in a simulation are assumed to 

have the same latitude. Light-correction and light-at-night also apply to all reaches and could 

vary among sites with very different light conditions. None of these parameters appear to have 

strong effects on model results (Sect. 26.2). 

Two parameters, reach-shear-A and reach-shear-B, serve to relate reach-average Shields shear 

stress to flow in the redd scour submodel (Sect. 9.35). Before addressing these parameters, users 

must first determine if the redd scour submodel is appropriate for their study reach. The 

submodel is designed for alluvial streams with fairly extensive spawning gravel beds or bars. In 

reaches where spawning occurs primarily in pocket gravels behind obstructions, one might 

assume that scour processes can still be approximated with the submodel because in such reaches 

scour of redds is probably still a stochastic event that increases with streamflow and decreases 

with redd depth. Setting reach-shear-A to zero turns off scouring mortality. 

The two shear parameters are typically evaluated by estimating a reach-scale Shields stress at 

each of several high flows and then fitting the parameters via logarithmic regression. Shields 

stress can be calculated from shear stress, which can be output from some hydraulic models. 

(Haschenburger 1999 provides the conversion in her Equation 3, but the method is widely used 

in the sediment transport literature.) This reach-scale Shields stress is intended to represent the 

shear stress in spawning areas. When calculating reach-scale Shields stress from hydraulic model 

output, we recommend averaging stress only over the within-channel cells where spawning is 

likely, not over the entire wetted channel, especially at high flows that inundate the flood plain. 

Averaging Shields stress over the entire wetted area under such conditions would underestimate 

stress in cells with redds. 

When hydrodynamic models do not provide estimates of shear stress, Shields stress can be 

estimated using a standard equation relating it to hydraulic radius, energy slope, and sediment 

size, explained in Sect. 16.7.2 of Railsback et al. (2009). Because this method assumes that all 

flow resistance results from bed shear stress, Shields stress should be estimated for channel 

sections lacking sharp bends and obstacles that provide “form resistance” to flow. 

The parameter reach-max-spawn-flow can be especially important to evaluate carefully because 

it can strongly limit spawning. This parameter represents the flow above which model trout do 
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not spawn, which is essentially impossible to evaluate empirically. Instead, consider potential 

scour and dewatering redd mortality, and the flow regime. It is reasonable to assume that trout 

would not spawn at flows high enough to make redd scour likely, so reach-max-spawn-flow 

should be a flow with low probability of redd scour (Sect. 9.35), e.g., daily scour probability less 

than 0.05. This parameter should also prevent spawning at flows so high that suitable spawning 

locations (Sect. 9.29) are likely to be dry at flows typical during the redd incubation period. 

Finally, be sure that the value of reach-max-spawn-flow does not prevent spawning for much of 

the spawning period. 

Table 31. Reach parameters. 

Parameter Value type Typical value Parameter meaning 

reach-name Text "Example-reach" The names of the reaches (or single 

reach). These names must exactly 

match the reach names used in the 

GIS shapefile. 

time-series-

input-file 

Text "Example-reach-
TimeSeriesInputs.csv" 

The name (and path, if necessary) 

for each reach’s time series input 

file. More than one reach can use 

the same file. 

depth-file-

name 

Text "Example-reach-
depths.csv" 

Name (and path) for the files 

containing cell depth lookup input. 

velocity-file-

name 

Text "Example-reach-
vels.csv" 

Cell velocity lookup input file 

names. 

reach-drift-

conc 

Number 

(often in 

scientific 

notation) 

3.75E-10  Concentration of drift food (g/cm3) 

for each reach (sects. 9.11.1, 9.22). 

reach-

search-prod 

Number 

(often in 

scientific 

notation) 

1.0E-5 Reach search food production rates 

(g/cm2/d; sects. 9.11.1, 9.23). 

reach-

shelter-

speed-frac 

Real number 

between 0.0 

and 1.0 

0.3 Swimming speed of a trout using 

velocity shelter, as a fraction of the 

cell’s velocity (Sect. 9.13). 

reach-prey-

energy-

density 

Real number 2500 Energy density of prey (trout food; 

J/g; Sect. 9.21). 
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Parameter Value type Typical value Parameter meaning 

reach-drift-

regen-

distance 

Real number 1000 Distance (cm) over which 

consumed drift food is regenerated 

(Sect. 9.11.1). 

reach-

shading 

Real number 

between 0.0 

and 1.0 

0.9 Fraction of sunlight that is not 

blocked by shading (by trees, hills, 

etc.; Sect. 9.10). 

reach-fish-

pred-min 

Real number 

between 0.0 

and 1.0 

0.9 Daily probability of surviving 

predation by fish, for the most 

vulnerable trout (Sect. 9.19). 

reach-terr-

pred-min 

Real number 

between 0.0 

and 1.0 

0.95 Daily probability of surviving 

predation by terrestrial animals, for 

the most vulnerable trout (Sect. 

9.18). 

reach-light-

turbid-coef 

Real number 0.0017 Multiplier coefficient in the 

equation for light attenuation as a 

function of depth and turbidity 

(Sect. 9.10). 

reach-light-

turbid-const 

Real number 0.0 Constant coefficient in the light 

attenuation equation (Sect. 9.10). 

reach-max-

spawn-flow 

Real number 20 Flow (m3/s) above which trout do 

not spawn (Sect. 9.27.5). 

reach-

shear-A 

Real number 0.013 Multiplier (s/m3) in the equation 

calculating shear stress from flow, 

to model redd scour. A value of 0.0 

turns off redd scour (Sect. 9.35). 

reach-

shear-B 

Real number 0.40 Exponent (dimensionless) in the 

shear stress equation (Sect. 9.35). 

 

23.2 Site- and species-specific trout parameters 
Only a few of the trout parameters are usually re-evaluated among application sites, even when 

different trout species are modeled. In fact we discourage users from replacing our standard trout 

parameter values—except those specifically listed below—with new ones from the literature or 

field studies, unless those new values are very carefully selected from reliable information 

compatible with inSTREAM’s assumptions and temporal and spatial scales.  
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Biologists often assume inherent differences among species and that therefore modeling a 

different species requires re-evaluation of all the trout parameters, and it is easy to find literature 

suggesting different values for of them. However, our experience trying to extract valid 

parameter values from the literature suggests a conservative approach to this issue. Rigorous 

examination of many studies makes it clear that differences in observed rates and potential 

parameter values that could be interpreted as differences among species are just as likely due to 

differences in study methods or characteristics of the study fish. Further, differences among trout 

species or populations that could be interpreted as inherent (e.g., size at spawning, tendencies to 

be nocturnal) can instead emerge in inSTREAM from differences in habitat only. Therefore, our 

approach is to use the simplest assumption, that differences in trout parameters among species 

and populations are negligible, absent clear evidence to the contrary.   

The following trout parameters do deserve examination and, potentially, new values for new 

species or sites. Many of these parameters depend on the size and age typically attained by 

adults, so especially deserve attention when applying inSTREAM to large rivers where trout 

typically mature and spawn only when relatively old and large. Again, we suggest using the 

detailed information and literature on each parameter in Sect. 9 in selecting values.  

Trout-move-radius-max and trout-move-radius-L9 (Sect. 9.13.1): The distance over which trout 

explore and select habitat, and how that distance varies with trout size, can depend on site-

specific conditions such as stream gradient and complexity. These parameters also strongly 

affect execution speed; the value of trout-move-radius-max can be reduced to reduce model 

execution time. 

Trout-fitness-length (Sect. 9.13.2): The value of this parameter should reflect the length of large 

adult trout, which varies among sites. 

Trout-spawn-start-day and trout-spawn-end-day (Sect. 9.27.3): The timing of spawning 

certainly differs between fall- and spring-spawning species and populations, and potentially 

could vary among locally adapted population of the same species. 

Trout-spawn-min-age and trout-spawn-min-length (Sect. 9.27.1): The age and size of maturity 

can vary substantially within trout species, especially between small and large rivers and across 

gradients in productivity such as those across latitudes and altitudes. 

Trout-spawn-min-temp and trout-spawn-max-temp (Sect. 9.27.4): These temperature thresholds 

for spawning must be expected to vary among species and populations that spawn in different 

seasons or that inhabit different temperature regimes. 

Trout-spawn-prob (Sect. 9.27): While this parameter cannot be measured, we can reasonably 

expect it to be higher where all the criteria for spawning are met on fewer days per year. 

Trout-weight-A and trout-weight-B (Sect. 9.20): These parameters can often be derived from 

site-specific fish data, e.g., via logarithmic regression on data from high-condition individuals. 

Mort-high-temp-T1 and mort-high-temp-T9 (Sect. 9.15): We cautiously recommend reviewing 

these parameters for differences among species. Unfortunately, the extensive literature on 

temperature effects on salmonids offers very little that can be reliably interpreted into survival 



 

222 

 

parameter values. Differences in experimental methods and endpoints, individual variability 

(which could be natural but also result from failure to control variables such as size and energy 

reserves), incompatible time scales (e.g., survival for 15 days is not comparable to daily survival 

probability), and other problems make it difficult to identify and quantify differences among 

species and populations. 

Mort-terr-pred-L1 and mort-terr-pred-L9 (Sect. 9.18.1), mort-terr-pred-D1 and mort-terr-pred-

D9 (Sect. 9.18.2), mort-terr-pred-H1 and mort-terr-pred-H9 (Sect. 9.18.5), mort-terr-pred-

hiding-factor (9.18.6): These parameters that control how survival of terrestrial predation varies 

with characteristics of trout and their habitat cells should be revised to reflect the kinds of 

predators and habitat at each study site. Especially important to consider is the prevalence of 

predators (e.g., otters) that can be effective in deep and fast water and can extract trout from 

hiding places. (Sect. 9.18) 

Mort-fish-pred-L1 and mort-fish-pred-L9 (Sect. 9.19.1), mort-fish-pred-P1 and mort-fish-pred-

P9 (Sect. 9.19.5), mort-fish-pred-T1 and mort-fish-pred-T9 (Sect. 9.19.6): Parameters for 

survival of fish predation are especially dependent on whether piscivorous fish other than trout 

are present and the characteristics of such piscivores (Sect. 9.19). 

Mort-fish-pred-hiding-factor (Sect. 9.19.4): This parameter should reflect the relative 

availability of habitat (especially substrate with voids) providing hiding cover for small but not 

large trout. 

Mort-redd-hi-temp-T1 and mort-redd-hi-temp-T9 (Sect. 9.33), mort-redd-lo-temp-T1 and mort-

redd-lo-temp-T9 (Sect. 9.9.32): These parameters defining temperature mortality of eggs are 

expected to vary among species and populations adapted to winter vs. spring incubation. 

Mort-redd-scour-depth (Sect. 9.35), redd-area (Sect. 9.36): These parameters should increase 

with the size of spawners. 

Redd-devel-A, redd-devel-B, redd-devel-C (Sect. 9.37): Egg incubation rates clearly differ 

among species. 

Trout-depth-suitability and trout-velocity-suitability (Sect. 9.29): These criteria for spawning 

suitability likely vary with spawner size; site-specific criteria may be available from PHABSIM 

studies. 

Trout-superind-max-rep (Sect. 9.39): It is appropriate for this parameter to be large (~20-40) for 

large reaches that use large cells to represent the stream margins often inhabited by small trout, 

and the computational advantage of large values is especially important for large sites. Smaller 

values (5-10) make sense at smaller sites, to capture sufficient individual variability and avoid 

artifacts of smaller cell sizes. 
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24 Calibration 

24.1 Calibration purposes and general considerations 
Calibration of a model refers to adjusting parameter values to improve how well model results 

reproduce observed data. Mechanistic IBMs like inSTREAM differ from traditional simple 

ecological models in the importance, purposes, and methods of calibration. For simpler models, 

calibration is often considered the most important step in modeling. The closeness of the 

calibrated fit of model results to data is often considered the most (or only) important measure of 

a model’s accuracy and usefulness. Calibration is relatively simple because simple models have 

few parameters and typically produce only one kind of output (e.g., annual abundance). An 

extensive literature addresses calibration of simple models to data (e.g., Hilborn and Mangel 

1997).  

For IBMs, however, traditional calibration to data is less important and more complex. 

Calibration is less important than developing confidence that the model’s mechanisms and 

processes are reasonably accurate: for a complex IBM, calibration is not meaningful unless 

preceded by analysis and testing of the model’s mechanisms and processes (as we do for 

individual submodels in Sect. 9; see also Sect. 27). In fact, our experience with inSTREAM 

confirms that well-tested mechanistic models can be used for many kinds of analyses without 

site-specific calibration. (In Sect. 26.5 we consider how study conclusions based on inSTREAM 

can be robust to variation in parameter values.) But calibration of complex IBMs is more 

complicated because they have many parameters and produce multiple kinds of results that each 

can respond differently to parameter values. 

Calibration of inSTREAM to a particular application typically has two purposes: evaluating and 

improving how well the model reproduces observations, and estimating values of especially 

uncertain but important parameters. Showing that inSTREAM can reproduce observed data from 

an application site is not always possible or necessary for the model to be useful. Because many 

experiments that have already demonstrated the usefulness of its mechanisms (e.g., sects. 3.2, 

27), inSTREAM can be useful as a research or decision-support tool even when calibration data 

are unavailable. (In fact, models that require long-term, site-specific calibration data are rarely 

useful for management decision support because such data are rarely available.) However, 

resource managers and reviewers consider a model’s ability to reproduce observed data a critical 

measure of the model’s reliability. Therefore, many users of inSTREAM will need to conduct 

and document some kind of calibration that shows that the model produces plausible results. The 

second calibration purpose of estimating values of uncertain parameters is almost always 

relevant because inSTREAM has a very small number of important parameters that are best 

estimated via calibration (Sect. 24.3). 

Both of these purposes can usually be met via a modest calibration process of adjusting the 

values of 2-4 parameters to make inSTREAM reproduce observed, or at least plausible, values of 

key results such as adult trout abundance and size. 

Railsback and Grimm (2019; their chapter 20) address many issues in calibration of IBMs and 

provide guidance on methods. Here, we summarize approaches that are particularly relevant to 

inSTREAM. Calibration typically involves identifying “targets”—criteria defining when the 

model is adequately calibrated, selecting the parameters to adjust, and then conducting and 
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analyzing simulation experiments to find parameter values that meet the targets. These steps are 

considered in the following subsections. 

24.2 Calibration targets 
The first step in calibration is usually to identify which model results will be compared to which 

observations, and how the comparison will be made. We refer to this step as defining the 

calibration targets, which are the specific measures of model fit to observations. Developing 

calibration targets typically includes the following three substeps. 

24.2.1 Selecting population measures 

Developing calibration targets requires identifying the specific measures of the population that 

will be compared between model and field observations. Typical measures include trout 

abundance and mean length, broken out by age classes (e.g., age 1 and age 2 and older). 

However, the target must also specify the date or time of year of these measures, because trout 

population measures change over time. Usually, the availability of field data constrains the 

choice of population measures. 

InSTREAM 7’s representation of the full daily light cycle adds several potential dimensions to 

the selection of calibration targets. First, the percentage of fish feeding at different times of day 

could be treated as a calibration target, even if very coarsely (e.g., a target that not all adult trout 

feed at night during September, when daytime feeding was observed in the field). In fact, our 

experience indicates that attempting to closely calibrate the time of day when trout feed could be 

challenging and not extremely important, even if reliable observations are available (Railsback et 

al. 2020). Second, the possibility that not all trout are active in daytime is relevant to the 

development of abundance targets from observations such as snorkel surveys that likely miss fish 

that are not active in daytime. 

24.2.2 Representing time: constant vs. time-series targets 

Developing calibration targets requires deciding how they represent time. Calibration targets can 

be either constant or time-series: inSTREAM can be calibrated to reproduce single numbers 

(e.g., the long-term mean lengths of age 1 and 2 trout) or time series of observations (e.g., the 

adult trout abundance observed each October of a five-year period).  

Time-series calibration is possible only if data from several years are available. It is valuable for 

evaluating how well inSTREAM reproduces long-term population dynamics and how they 

depend on inputs that vary among years. We do not recommend attempting to calibrate 

inSTREAM against observations at time intervals smaller than one year. InSTREAM ignores or 

strongly simplifies some seasonal processes, such as variation in food production, so calibration 

at an annual time scale can be more meaningful and successful than attempting to match 

observations over shorter times. 

Constant calibration targets can be used when no time series of observations are available, or 

when field observations are not comparable to inSTREAM results because of strong effects of 

events or processes not represented in the model. Constant targets can be used when no field 

observations at all are available. Constant targets can be specified as “best” values (e.g., October 

1 mean length of age 1 trout as close as possible to 12 cm) or as ranges of acceptable values 

(e.g., mean age 1 length between 10 and 14 cm).  
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24.2.3 Comparing model results to observations 

Developing calibration targets also requires specifying exactly how inSTREAM’s results will be 

compared to observations and how “best” or acceptable model results will be identified. How to 

combine or trade off results for multiple population measures is an important consideration, 

because one set of parameter values rarely produces the best calibration for multiple calibration 

targets such as the abundance and size of several age classes. 

In time-series calibration, model results can be compared to observations using one of two 

closely related methods. One is to rank results from each alternative parameterization (discussed 

below) by the sum of squared differences between model-predicted and observed values; smaller 

values of this measure indicate better model fit. The second method is to regress model-predicted 

and observed values against each other on an X-Y plot and evaluate alternative parameterizations 

by their correlation coefficient, how close the slope is to 1.0, and how close the Y intercept is to 

zero (Smith and Rose 1995). Using such measures of model fit becomes ambiguous and requires 

judgement when attempting to calibrate more than one kind of model result, e.g., by considering 

both length and abundance of several different age classes. We can, for example, evaluate model 

fit for each model result separately and look for parameter values that provide relatively good fit 

for the most kinds of results. 

Constant targets have the advantage of being clearer to apply to multiple kinds of model result. 

One approach is to look not for parameter values that provide the “best” fit for any model result 

but instead for values that provide acceptable fits for all results. We can, for example, specify 

ranges of acceptable values for four kinds of result: October 1 length and abundance of age 1 and 

age 2 and older trout, averaged over five simulated years. Calibration can then evaluate 

parameter combinations by how many of these four kinds of result fall within their target ranges. 

This approach is similar to “parameter filtering” or “pattern-oriented parameterization” (Grimm 

and Railsback 2005, 2019), in which a variety of observed patterns or ranges in different kinds of 

results are used as “filters” to identify good combinations of parameter values. 

These approaches can be combined. For example, we can first “filter” all the parameter 

combinations examined to exclude those that produced trout lengths outside a target range, and 

then use the regression approach on the remaining combinations to find the one best fitting a 

time series of abundance. 

24.3 Calibration parameters and outputs 
The second major calibration step is selecting the inSTREAM parameters to adjust. In doing so, 

we can use one lesson from traditional, simple ecological models: calibrating fewer parameters 

increases confidence in their calibrated values. Trying to adjust too many parameters reduces our 

ability to find the best range of values for each, so adjusting as few parameters as possible is 

generally recommended. The parameters most suitable for calibration are those to which model 

results are highly sensitive (Sect. 26.2) and for which there is little other basis for selecting 

values. These considerations, plus our experience with inSTREAM, identify five parameters that 

are especially suited for calibration. We do not recommend calibrating all these parameters at 

once; in fact, we typically use only the first 2-3 of them at any particular site. However, the 

choice of which of these parameters to calibrate can depend on what data are available and which 

outputs most need adjustment. For example, juvenile abundance and size are typically known 
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with less certainty and are of less management importance, so we focus calibration on 

parameters that most strongly affect adult results.  

We recommend considering the following five parameters for calibration. We illustrate their 

typical effects on model results via sensitivity analyses that varied the calibration parameter over 

a wide range and examined how simulated trout abundance and length responded (Figure 68). 

We examined two age classes: age 1, and 2 and older. The experiments represented a 

hypothetical trout population in the “RESTORED” stream reach of Railsback et al. (2021). 

• Concentration of drift food (reach-drift-conc): This parameter strongly affects growth and 

survival of all age classes (Figure 68A). Data on actual drift availability are rarely available 

and, when available, typically highly variable and uncertain. (We do not expect calibrated 

values of reach-drift-conc to match observed drift concentrations because this parameter also 

captures effects of several processes that are neglected in inSTREAM, e.g., variation in prey 

size and energy content, and spatial and seasonal variation in drift production.) Drift food 

concentration is typically the first parameter to consider in calibration. 

• Survival of terrestrial predation (reach-terr-pred-min): Terrestrial predation is typically a 

dominant source of mortality for all but the smallest trout, so this parameter strongly affects 

trout abundance (but not size) and actual predation rates are almost never known (Figure 

68B). This parameter is particularly useful for adjusting abundance with little effect on size. 

• Regeneration distance for drift food (reach-drift-regen-distance): This parameter affects the 

total availability of drift food per cell, which can limit how many trout can occupy each high-

quality cell, but not the drift intake and growth of the individual trout. Consequently, it can 

strong affect trout abundance without affecting size (Figure 68C). This parameter could be 

calibrated by attempting to match observed densities of trout in high-quality habitat. 

• Production of stationary food (reach-search-prod): Search feeding typically is profitable 

only for some juveniles throughout the day and for adult trout feeding at night, although such 

fish often also use drift feeding. Therefore, the parameter typically affects size of age 0 and 1 

trout, with little effect on older fish (Figure 68D). This search food parameter is therefore 

useful for calibrating differences in size between earlier (ages 0 and 1) and later age classes. 

• Survival of fish predation (reach-fish-pred-min): Small juvenile trout are highly vulnerable 

to predation by other fish, but the actual risk is highly variable and difficult to quantify. 

Therefore, this parameter can be useful for calibrating the abundance of age 0 and, to a lesser 

extent, age 1 trout (Figure 68E-F), even if it has little effect on adult abundance. This 

parameter can have strong effects on adult abundance when inSTREAM is parameterized to 

represent predation by non-trout fish (which it is not in Figure 68). 
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Figure 68. Example sensitivity experiment for parameters typically used to calibrate inSTREAM. 

Graphs display response of simulated abundance (left Y axis) and mean length (right Y axis) of 

age 1 and age 2 and older trout to: (A) reach-drift-conc, (B) reach-terr-pred-min, (C) reach-

drift-regen-distance, (D) reach-search-prod, and (E) reach-fish-pred-min. Graph F illustrates 

response of age 0 and 1 trout to reach-fish-pred-min; note its different Y axis scales. 
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24.4 Calibration experiment designs 
The next calibration step is designing the simulation experiments that will produce output to be 

compared to observations. Here we discuss two relatively simple and direct ways of conducting 

simulation experiments to find useful values of calibration parameters.  

[We do not provide guidance on the more sophisticated and comprehensive approaches that the 

simulation modeling literature and software tools for NetLogo make possible for users with the 

necessary computer resources. The NetLogo software platform used by inSTREAM 7 includes a 

parameter-fitting tool called BehaviorSearch that provides a third approach. BehaviorSearch uses 

sophisticated optimization methods to find parameter values that cause a NetLogo model to fit a 

specific numerical criterion. However, BehaviorSearch is unlikely to be a good calibration 

approach for inSTREAM because it requires a single measure of model fit—discussed to some 

extent in Sect. 24.2.3—and depends on larger numbers of model runs than are often feasible with 

inSTREAM. It is also not clear whether inSTREAM’s stochasticity would prevent the 

optimization methods from reaching a solution. Salecker et al. (2019) provide similar capabilities 

via a package in the R statistical language for automated analysis of NetLogo models. We have 

not yet attempted to calibrate inSTREAM using either of these tools, but Ayllón et al. 2016 used 

a comprehensive “Latin hypercube” approach for calibrating an earlier version of inSTREAM 

that was also in NetLogo.] 

One parameter at a time. The first approach fits inSTREAM’s results to observed data by 

adjusting one parameter at a time. Each parameter can be calibrated simply by trying several 

different values and trying to zero in on a good value, but it is typically more efficient and 

rigorous to use a sensitivity experiment approach (Sect. 25.3.2; Figure 68), running the model 

several times using a wide range of values. The sensitivity experiment approach illustrates how 

the model responds to the calibration parameter and how much of the variation in results is due 

to stochasticity. Good parameter values can be interpolated from the sensitivity response. 

A coarse (but often adequate) calibration of inSTREAM can often be achieved using the one-at-

a-time approach. First, fit the size (length or weight) of age 1 and older trout by adjusting reach-

drift-conc. Then fit the abundance of age 1 and older trout by adjusting reach-terr-pred-min. If 

reliable calibration targets are available for age 0 trout, their abundance can be fit by adjusting 

reach-fish-pred-min and their size by adjusting reach-search-prod. After each of these steps is 

completed, of course it is necessary to check whether the previous steps have been affected. For 

example, adjusting reach-search-prod is likely to have some effect on adult size, but perhaps not 

enough to require re-calibration of reach-drift-conc. 

Parameter combinations. The second approach uses simulation experiments that vary more 

than one parameter at a time to “explore the parameter space” and systematically search for good 

combinations of parameter values. This approach can be implemented by selecting ~4 values, 

over wide ranges, of two or three parameters (usually, reach-drift-conc and reach-terr-pred-

min), and then running inSTREAM with all combinations of the parameter values and 

identifying combinations that best meet the calibration targets. If one or several measures of 

model fit to data can be developed (e.g., the sum of squared differences measure discussed in 

Sect. 24.2, applied separately to adult trout length and abundance), then contour plots can be 

used to observe how the value of those measures responded to the calibration parameter values in 

the simulation experiments, and to interpolate good parameter combinations. Examining such 
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contour plots of fit to (e.g.) adult abundance and length allows identification of parameter 

combinations that best meet both targets. Additional simulation experiments over narrower 

ranges of parameter values can then refine the search for good combinations. 

24.5 Calibration model run setup 
The final step in designing calibration methods is selecting the model input and settings. Here we 

address several important considerations in how to set up the simulation experiments used for 

calibration: what initial conditions to use, the duration of model runs, and use of replication. 

NetLogo’s BehaviorSpace tool (Sect. 15; not to be confused with BehaviorSearch) is invaluable 

for automating calibration experiments, reducing the time for both setting up and executing 

them; we strongly recommend its use. 

Initial conditions refers to the input and parameters that define the virtual trout population at the 

start of a model run (Sect. 7). Ideally, initial conditions are unimportant because the calibration 

simulations will be long enough to eliminate the effects of initial population characteristics 

(discussed below). We typically initialize calibration simulations with populations resembling 

the calibration targets: with approximately the same number and size of trout, by species and age 

class, that we are calibrating the model to predict. This approach should make model results even 

less affected by initial conditions than would an initial population very different from the 

calibration targets. 

Model run duration is determined by two factors: how much time the calibration targets 

represent and how long inSTREAM needs to run to make initial conditions unimportant. When 

using time-series calibration (Sect. 24.2.2) we of course need to simulate the same years 

represented by the field observations. When using constant calibration targets, model runs need 

to be long enough to adequately represent the range of conditions that the targets are assumed to 

represent. This duration can depend on the variability of conditions at the study site. For 

example, where flow and temperature regimes are closely constrained by a reservoir, relatively 

short simulations can be adequate.  

We address the effects of initial conditions on model results in Sect. 26.3, which indicates that 3-

5 years can be assumed sufficient to make inSTREAM results reasonably unaffected by initial 

conditions. Therefore, we typically exclude the first 3-5 years of simulations from the analyses. 

If input for such “warm-up” years is not available, it can be generated by copying and repeating 

the input for subsequent years. 

Replication is a consideration for all simulation experiments (discussed further in Sect. 25): do 

we need to run each set of parameter values several times to distinguish its effects from those of 

stochasticity?  

In general, we find it more useful to simulate more parameter values than to replicate each value, 

perhaps with the exception of when calibrating a small and therefore particularly stochastic 

virtual population. For example, if it is computationally feasible to complete ~130 model runs for 

a calibration experiment, it is typically preferable to use all combinations of five values of three 

calibration parameters instead of five replicates of three values of each parameter. However, the 

calibration analyses should consider that some variation in model results is stochastic: parameter 

combinations that seem to produce especially good fit to observations deserve further 
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examination (e.g., with a second experiment over narrower parameter ranges) to determine the 

influence of stochasticity. 

25 Simulation Experiments 

25.1 General study design considerations 
Models like inSTREAM are applied to management or research problems by designing and 

conducting simulation experiments: controlled experiments conducted on the model, just as 

scientists conduct controlled studies in the field or laboratory. In many ways designing 

simulation experiments is similar to designing field studies—the study design must determine:  

• Which inputs (data or parameters) to “control” (hold constant) and which to vary in what 

ways,  

• What model output must be “observed” from the experiment,  

• How many replicates are needed, and  

• What statistical or graphical methods will be used to interpret the results.  

One key difference between simulation experiments and field studies is that simulation 

experiments are cheap, fast, well-controlled, and highly observable. Instead of relying on 

extensive statistical analysis of relatively few data (the typical situation with field studies) we 

can run more simulation experiments. Grimm and Railsback (2005; see their Chapter 9) and 

Railsback and Grimm (2019) provide general guidance on study design and analysis of IBMs; 

here we focus on issues specific to inSTREAM. 

Two terms (also defined in Sect. 2.1) are important in discussing study design. A scenario is a 

complete set of input to inSTREAM that represents one particular set of environmental 

conditions and one management alternative. Effects of various environmental conditions (e.g., 

wet, average, or dry flow years) or management alternatives (e.g., instream flow requirements A, 

B, or C) are typically assessed by comparing output produced by several different scenarios. 

Replicates (or “repetitions” in NetLogo terminology; Sect. 15.2) are multiple models runs that 

represent the same scenario (use exactly the same input data and parameters) but use different 

pseudo-random numbers; variation in results among replicates represents the effects of the 

model’s stochastic processes. (We also consider another replication method in Sect. 25.3.1.) 

Some issues to consider in designing inSTREAM experiments are: 

• The model produces many kinds of output, including time series of population abundance 

and biomass broken out by age and species, mortality rates for each mortality source, 

habitat availability and use, the number and timing of spawning events, and how many 

eggs died of each mortality source and how many survived to emergence. Simulations of 

multiple species can predict the relative abundance of each species, and long-term 

simulations can predict the frequency of local extinction under various conditions.  

• Model results are stochastic, mainly because spawning success and trout mortality are 

stochastic. Therefore, it is important to understand the extent to which differences in 

model results for different scenarios may be due to chance. 
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• Model assumptions, parameters, and input data are uncertain, so model predictions are 

uncertain. These uncertainties need to be acknowledged and addressed when using the 

model to support decisions. (This topic is addressed in Sect. 26.5.) 

• Natural variability in physical habitat (river channel shape, etc.) and in flow and weather 

can have strong effects on results, sometimes stronger than those of the management 

alternatives the study is designed to compare. The effects of natural variability is another 

kind of uncertainty in model results. 

• While simulation experiments using inSTREAM are far faster and cheaper than field 

studies, there are limits to how many model runs are feasible.  

• The arbitrariness of conventional statistical methods for comparing scenarios (Hilborn 

1997) becomes especially apparent with data generated by a simulation model. Whether 

the results of two scenarios are “significantly different” depends on the number of 

replicates and the magnitude of differences among scenario inputs, which are both easily 

manipulated in simulation experiments (Wilson et al. 2014). 

The importance of each of these issues depends on the study site and the problem addressed. The 

following subsections provide general guidance based on our experience with inSTREAM.  

25.2 Outputs to analyze 
One of the first questions in designing a study using inSTREAM is which of the model’s outputs 

to analyze. It is completely impractical and counterproductive to analyze all the model’s possible 

results: attempting to do so is more likely to paralyze than support decision-making. However, 

inSTREAM’s many kinds of output allow us to do what we cannot with field studies: look at the 

primary results and then explore further to learn what caused them. The model is far more 

valuable when we do not just look at its key outputs but instead then use it as a tool for 

understanding how different processes affect simulated, and therefore perhaps real, trout 

populations. Analysis of results should therefore be an adaptive process in which we first look at 

primary outputs and then selectively examine others. 

Effective analyses often start by examining only one or two key outputs. Focusing on a few 

obviously important results usually provides clearer, less-confusing support for management 

decisions. Especially for management decision support such as instream flow assessment, study 

design typically focuses on the abundance and size of adult trout. In fact, population biomass 

(total weight of all trout, or all adult trout) is a useful measure that reflects both abundance and 

size of individuals. Abundance and size are clear, measurable indicators of the status of fish 

populations; managers and the public can easily relate to these indicators, and comparable 

measures of real populations are often available. 

Of course other study goals may require focus on other outputs. If the viability of a threatened 

trout population is the key management interest, then simulated population persistence may be 

the most important model output. Persistence can be evaluated as, for example, the number of 

replicate 50-year simulations in which extinction occurred, out of 50 total replicates. Relative 

abundance of native vs. exotic trout species can be an important output when management goals 

include promoting native species.  

Despite the importance of focusing on a few key outputs, analyzing only those outputs is 

completely inadequate. Conclusions, recommendations, and management decisions will gain 
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value from analyses that examine more detailed outputs to understand primary outputs such as 

abundance and biomass.  

Examining why inSTREAM produced the results it did is essential for several reasons. First, 

inSTREAM often produces results strongly driven by mechanisms that, upon inspection, are not 

very credible and need modification to produce more believable results. A typical example is a 

set of instream flow scenarios that produce sharply lower abundance above a certain flow. That 

result could arise from mechanisms as simple as the higher instream flows often exceeding the 

maximum flow at which trout can spawn (reach-max-spawn-flow; Sect. 9.27.5) or spawning-

season temperatures rarely exceeding the lower threshold for spawning (trout-spawn-min-temp; 

Sect. 9.27.4). Because real trout could likely adapt to such changes by spawning at different 

times or flows, prudent users would try parameter values that let trout spawn under all scenarios 

and repeat the simulation experiment. 

On the other hand, determining what mechanisms drive primary population responses often leads 

to valuable insight on what strongly affects the simulated trout population and, therefore, how 

the real population might be managed more successfully or cost-effectively. InSTREAM very 

often identifies important mechanisms that biologists would otherwise be unlikely to think about; 

examples include: 

• High mortality of redds due to temperature, scour, or superimposition; 

• Changes in temperature regime during incubation that, by changing egg development 

rates, cause more (or fewer) fry to emerge when flow is high and fry habitat scarce; 

• Conditions that reduce adult trout growth (e.g., low flows, high temperatures) before the 

spawning season and, therefore, the number and fecundity of spawners; 

• Low-growth conditions after spawning that reduce the post-spawning survival of adults; 

and 

• Changes in temperature regime during high-growth seasons (spring, fall) that affect trout 

fecundity and ability to survive subsequent seasons. 

Uncovering such mechanisms requires creative detective work using methods that must be 

adapted to each situation (see also Sect. 25.4 below). We recommend users start by examining 

outputs such as: 

• Time series of abundance, by age class. Where in the life cycle did abundance diverge 

among the scenarios? 

• Time series of length, by age class. Are there major differences among scenarios in how 

much growth occurs when? 

• What percentage of adults spawned? If few adults spawned, why? Which of the spawning 

criteria (Sect. 9.27) were not met? 

• What percentage of eggs died, of what causes? 

(The detective work to identify important mechanisms can include not only analysis of additional 

outputs but also the use of new, often unrealistically simplified, simulation scenarios as 

discussed in Sect. 25.4. These scenarios can be designed to test specific hypotheses about what 

mechanisms in the model explain key results.) 
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Trout mortality results (how many simulated trout died of which causes) are often surprisingly 

unhelpful for understanding simulation results. The reason is that the habitat and activity 

selection behavior produces tradeoffs among mortality risks that obscure the importance of 

different stressors. For example, a scenario with high summer temperatures increases trout 

metabolic rates; consequently, the trout decide to feed more often and in riskier conditions (more 

often in daytime or in less-safe habitat) to get the food they need to reduce the risk of starvation. 

As a result, the effects of high temperatures show up as increases in mortality due to predation 

and starvation as well as high temperature. We cannot infer what stressors most affect the 

population by looking only at what trout died of. Another reason mortality output can be 

misleading is that high numbers of dead trout automatically result from high abundance: all trout 

die eventually, so the scenario that produces the highest number of dead trout is also the scenario 

that produced highest abundance. 

25.3 General experimental designs 
This section briefly describes two common general designs for studies using inSTREAM: 

scenario comparisons and sensitivity experiments. Scenario comparisons resemble the study 

designs commonly used in field or laboratory studies, but sensitivity experiments often can 

provide more information about how and why fish populations are predicted to vary. 

25.3.1 Scenario comparisons 

Scenario comparisons parallel traditional field studies: several distinct scenarios are defined, 

simulated, and compared. This approach is natural when the study purpose is comparing distinct 

management actions: assessing several alternative rules for instream flow releases, examining the 

effects of introducing another trout species, or deciding which of several channel restoration 

projects to implement. 

The first step in conducting scenario comparisons is to define the scenarios, by specifying what 

model inputs (parameter values and data such as channel shape, flow, and temperature; and, 

possibly, how many and which species) will vary among scenarios. For example, if the objective 

is to compare three sets of alternative instream flow release rules for a reservoir, then defining 

the scenarios could require generating (e.g., with a reservoir water balance model) the time series 

of daily flows that would result from each alternative rule set. If flow strongly affects water 

temperature, defining the scenarios could also require generating a time series of daily 

temperatures corresponding to each daily flow time series. In another example, Harvey and 

Railsback (2009) compared five turbidity scenarios, each differing only in the assumed relation 

between turbidity and streamflow. One scenario represented an undisturbed watershed in which 

turbidity increased slowly with flow (e.g., 25 NTUs turbidity at flow of 1.0 m3/s), another 

scenario represented a highly disturbed watershed with rapid increases in turbidity with flow 

(e.g., 190 NTUs at 1.0 m3/s), and three represented intermediate flow-turbidity relationships. 

The second step in a scenario comparison study is to decide what kind of replication to use. 

Normally, replication of stochastic simulation models is done by simply altering the random 

number generator seed to evaluate variability in results due to the model’s stochastic processes. 

This type of replication is commonly used in inSTREAM experiments. But inSTREAM’s “year 

shuffler” facility (Sect. 8.2) provides an alternative replication method: randomly re-ordering the 

years of input data. Simulations replicated by randomizing the input data years examine how 
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natural variability in flow, temperature, and turbidity (in addition to the model’s stochastic 

processes) affect results. 

Next, users must decide on the appropriate level of replication. Using too few replicates makes it 

impossible to understand how much of the variation among scenarios is due only to stochasticity, 

but using too many replicates is computationally burdensome and can produce statistical 

significance among scenario results when their biological significance (or likelihood of being 

detected in the field) is low. Using around 5-10 replicates has appeared sufficient to identify 

differences among scenarios that seem likely to be important for management. Five to 10 

replicates are insufficient to precisely define the distribution of stochastic results for a scenario, 

but if two scenarios cannot be distinguished by this many replicates, then their difference seems 

unlikely to be important compared to the effects of natural variability and model uncertainty.  

Results may be analyzed statistically or simply displayed. Statistical comparisons (typically, 

using two-sided t-tests or analyses of variance) can be informative, especially for audiences 

accustomed to statistical analysis. Results of replicated scenarios are likely to meet the 

assumption of normality for parametric statistics (except when “extinction” is common). 

However, simple graphical comparison of results (e.g., via bar charts with error bars, or scatter 

plots showing the value of each replicate—see Magnusson 2000) are often just as informative 

and easier to interpret. For examples of both statistical and graphical comparison of scenario 

results, see Railsback and Harvey (2002) and Railsback et al. (2005). 

25.3.2 Sensitivity experiments 

Sensitivity experiments are experimental designs intended to provide more and broader 

information about population responses to management actions. Instead of comparing a few 

discrete scenarios, a sensitivity experiment provides an “incremental” analysis of predicted trout 

populations responses to a range of actions. For example, an experiment could look at the 

population’s sensitivity to summer instream flow by simulating a broad range of instream flow 

scenarios. (The parameter sensitivity analyses in Sect. 26.2 are one kind of sensitivity 

experiment. Here, we look at model sensitivity to inputs other than parameter values; Sect. 26.3 

provides an example.) 

Version 5 of inSTREAM included a “Limiting Factors Tool,” software for setting up and 

executing sensitivity experiments for flow; summer and winter temperatures; food availability; 

availability of spawning gravel, velocity shelter, and hiding cover; predation risk; and redd scour. 

Fish biologists often think of a limiting factor as one such process that has a dominant effect on 

population abundance. In inSTREAM, because of its tradeoff behaviors, we never see just one or 

two such dominant factors, but it is still useful to determine how strong the effects of each of 

these factors are at a particular study site. We can do this with sensitivity experiments. 

InSTREAM 7 does not currently include a built-in tool for limiting factors analyses, in part 

because it is easy to set them up using the methods described here and BehaviorSpace (Sect. 15). 

The general steps in a sensitivity experiment are similar to those for a scenario comparison. First 

is to identify and define the scenarios to be simulated. Typical experiments use scenarios that 

vary only one or two inputs across broad ranges. An incremental analysis of instream flows 

would include perhaps 10-20 flow scenarios from very low to very high flow (e.g., Railsback et 

al. 2021). As another example, a sensitivity experiment on the effects of weekend pulse flow 
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releases for whitewater recreation could include scenarios ranging from zero to 20 weekends of 

whitewater release per year. Multivariate sensitivity experiments are also possible, for example 

by defining 50 scenarios that include 10 levels of minimum instream flow and 5 levels of 

whitewater release. It is useful to extend the simulated scenarios beyond the range considered 

feasible for management, to understand trends even at their extremes. 

The second step is to execute the scenarios. Typically, only one replicate is executed per scenario 

because it is not as important to understand the extent of variability in results for each scenario: 

output from many scenarios illustrates both the model’s response to the input being varied and 

the noise in this response.  

Using only one replicate of many scenarios does not mean that stochasticity is ignored in 

analyzing results. Analysis of results in a sensitivity experiment can use graphical and statistical 

techniques, but the techniques differ from those for scenario comparisons. The first analysis step 

should always be to plot how the trout population output of inSTREAM varied over the range of 

scenarios. Did the population increase or decrease consistently over the range? How “noisy” is 

the response? Stochasticity typically shows up as random variation around a smooth response. 

Experiments sometimes produce little or no detectable trend, indicating that the “signal” from the 

variable that changed among scenarios is small compared to the stochastic “noise” in the results. 

For multivariate sensitivity experiments, contour plots can be useful to examine responses. 

25.4 Variation in inputs: Realistic vs. unrealistic scenarios 
Another basic study design decision addresses how much realistic variation to include in the 

input scenarios. One advantage of IBMs such as inSTREAM is that they can naturally predict the 

effects of realistic, day-to-day variation in the driving inputs: flow, temperature, and turbidity. 

These variables typically vary from day to day as well as seasonally, even downstream of major 

reservoirs. However, including more variation in a simulation experiment can make it more 

difficult to thoroughly understand its results or distinguish among scenarios. Therefore, 

designing studies requires choosing between scenarios with realistic levels of variation in the 

time-series inputs and unrealistic scenarios with variation in some of the inputs suppressed to 

make analysis easier. 

In general, if the purpose of a study is assessment of management actions, there is less interest in 

understanding the details of how results arose and more interest in just predicting how trout 

populations respond to the actions. In this case, scenarios with realistic levels of variation may be 

most appropriate because they compare management actions in a simulated context most closely 

resembling the real situation. If, however, the purpose of a study is more focused on 

understanding the processes by which river management affects trout populations, then 

experiments using scenarios with unrealistically reduced variation of some variables may be 

most appropriate. In many cases, both approaches are useful: we can start with a more realistic 

level of variability and then use simplified, unrealistic scenarios as part of the detective work 

needed to reveal the mechanisms driving the primary results (Sect. 25.2). 

25.5 Conclusions and summary guidance 
Outlining an appropriate study design should be one of the first steps in applying inSTREAM to 

either river management or research studies. Not only does the study design influence the kinds 
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of inputs and analyses needed, but the process of developing the study design helps clarify how 

the modeling work can support the management decisions or research objectives.  

The most important concept in designing studies that use inSTREAM is that of simulation 

experiments: given appropriate input and calibration, the model can be considered a laboratory in 

which we conduct controlled experiments. Those experiments should be explicitly designed to 

address the purpose of the inSTREAM application: supporting a management decision, 

answering a research question, etc. 

Many applications of inSTREAM are expected to have the objective of comparing distinct 

management alternatives, for example alternative instream flow policies that determine daily 

flow releases. The scenario comparison approach is usually appropriate for such situations: 

specify sets of model input to represent each of the alternatives and use replicate simulations to 

examine the degree of predicted difference in trout populations among the alternatives. Model 

results can be used to rank the alternatives by their predicted benefits to trout (e.g., simulated 

average annual population biomass). The robustness of the analysis can be examined, using 

methods presented in Sect. 26.5, by determining how the rankings change when simulations use 

different values of key parameters, or different weather and hydrologic conditions, or alternative 

values for other particularly uncertain inputs. 

For many studies it will also be useful to conduct sensitivity (or “incremental”) analyses of how 

trout populations are predicted to vary over a broad range of inputs such as flow or temperature. 

These analyses are more useful for understanding how management variables (and potential 

“limiting factors”) affect trout and for finding good management policies. Results can be 

analyzed by developing graphical (and perhaps also statistical) relationships between measures 

of the trout population and values of the inputs. Robustness of results can be examined by 

determining if and how these relationships change across different values of particularly 

uncertain and important inputs. Especially for sensitivity experiments, users need not be 

constrained to using input with “realistic” levels of variability; instead, unrealistically limiting 

variability can help to understand some problems. 

For either the scenario comparison or sensitivity experiment approach, the greatest value of 

inSTREAM is the ability to dig deep into results to understand why they arose and learn what 

they say about the real system. In some cases we learn that seemingly important model results 

arise from assumptions, parameter values, or inputs that are questionable and need 

reconsideration, so the whole analysis cycle needs to be repeated. In other cases we learn what 

mechanisms appear to drive trout populations and, therefore, what management measures may be 

cost-effective for protecting or enhancing them. 

26 Sensitivity and Uncertainty in InSTREAM 7 

26.1 General considerations 
This section addresses basic questions about model sensitivity and uncertainty: To what inputs 

and parameters are inSTREAM results most sensitive? How should these sensitivities affect 

model use? How do uncertainties in parameter values affect model results? How robust are 

conclusions drawn from inSTREAM to parameter values and other inputs? More general 
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guidance on sensitivity, uncertainty, and robustness analysis of IBMs is provided by Grimm and 

Railsback (2005), Railsback and Grimm (2019), and Grimm and Berger (2016). 

In the following subsections, we address these questions in part by using example simulation 

analyses. Unfortunately, all of these analyses produce conclusions specific to the sites and 

questions we modeled; while we attempt to draw general conclusions, none of the guidance we 

provide can be considered universally applicable. The sensitivities and uncertainties in 

inSTREAM results must be expected to vary among sites, especially for sites subject to 

particularly strong stressors such as extreme temperatures, turbidities, predation pressure, or 

competition among species. There can even be important variation in sensitivities and 

uncertainties among scenarios for the same site. 

26.2 Sensitivity of primary predictions to parameter values 
Here we present a conventional parameter sensitivity analysis of inSTREAM 7. The purpose of 

the analysis is to quantify the effect of each parameter on the model’s primary outputs, its 

predictions of trout abundance and size. Parameters to which inSTREAM is particularly sensitive 

deserve special attention in parameterization and calibration and may be useful subjects of 

empirical research to improve the model.  

This analysis closely follows a previous analysis of inSTREAM 4.2 by Cunningham (2007), 

summarized by Railsback et al. (2009). We used a one-parameter-at-a-time design, varying each 

parameter by itself with other parameters constant at their standard values. We used the same 

physical habitat input as Cunningham (2007), the lower mainstem site of Little Jones Creek as 

described by Railsback and Harvey (2001). We first calibrated inSTREAM 7 to produce realistic 

values of the abundance and length of age 1 and 2 and older trout at this site. We used observed 

flows and temperatures for a 10-year period, water years 2000-2010. We analyzed the total 

biomass (kg) of trout age 1 and higher on September 30th, averaged over the last five of the 10 

simulated years. 

For each parameter, we estimated a range of realistic values, as a percentage of the standard 

value. We used wide but not extreme ranges of possible parameter values, usually centered on 

the standard value. The range for each parameter was based on the extent of empirical evidence 

for its standard value, and limited to values producing reasonable results (some parameters 

produce unrealistic results outside of a narrow and well-defined range). 

We ran 21 simulations for each parameter, using values across its range. For example, if a 

parameter was given a range of ±20%, then the 21 simulations used values of 80%, 82%, 84%, ... 

120% of the parameter’s standard value. Simulations for a parameter with a range of ±50% used 

values of 50%, 55%, ... 150% of the standard value. For the analysis, the 21 values of each 

parameter were replaced by “scaled” values of 0.0 to 1.0 in increments of 0.05. (The lowest 

value of each parameter had a scaled value of 0.0, the middle value had a scaled value of 0.5, and 

the highest was 1.0.)  

We calculated two measures of parameter sensitivity. First was the slope of the population 

biomass with respect to the scaled parameter values (the “scaled slope”), calculated using linear 

regression. Second was the “unscaled slope”, the slope of population biomass with respect to the 

parameter value as a percentage of its standard value. The scaled slope represents the biomass 
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response to a parameter over the full range of realistic parameter values, which is especially 

important for parameters producing nonlinear responses. For parameters producing linear 

responses, the unscaled slope is less dependent on the range’s magnitude. 

The effects of a few parameters were clearly nonlinear, with different slopes over different 

ranges of parameter values. In these cases, we report the slope over the range (at least 5-7 

parameter values) where it is steepest. 

These sensitivity measures could not be used for two kinds of parameters. Parameters 

representing dates (e.g., the date at which spawning starts) were instead analyzed by varying the 

date without scaling it. The sensitivity measures also do not work for parameters with a standard 

value of zero (because ±X% of 0.0 is 0.0); such parameters were either not analyzed or varied in 

another way that does not produce slopes comparable to those of other parameters. 

Results of the sensitivity analysis are presented in separate tables for habitat parameters (Table 

32), trout parameters except those for survival (Table 33), trout survival parameters (Table 34), 

and redd parameters (Table 35). These tables present each parameter’s standard value in this 

application, the range of values simulated, the scaled and unscaled biomass response slope, and a 

graph of mean age 1+ biomass response to the scaled parameter value. The graphs include a 

regression line for all 21 parameter values. Notes in the tables indicate parameters with nonlinear 

responses and those for which the slope method does not work. 

Table 36 provides a summary of the analysis, listing the parameters in descending order of 

sensitivity as the absolute value of scaled slope. This table omits the parameters for which this 

slope cannot be calculated.  

Interpretation of these results must recognize that the study site has consistently benign 

temperatures and low turbidity, and abundant velocity shelter and hiding cover. Therefore, 

parameters related to effects of these variables should be expected to have stronger effects at 

less-benign study sites. These results for Little Jones Creek are useful for identifying parameters 

likely to have strong effects at all sites, but not for identifying parameters that always have little 

effect. 

The analysis identified 14 parameters with absolute value of scaled slope greater than 1000, and 

26 parameters with scaled slopes greater than 500. The high sensitivity to these parameters 

indicates that the following processes are especially important in inSTREAM 7, in approximate 

order of decreasing importance: 

• Drift food availability; 

• Terrestrial predation and how it varies with habitat (depth, velocity, escape cover); 

• Drift feeding success and how it depends on light, turbidity, velocity, and fish size; 

• The habitat selection radius; 

• Trout maximum sustainable swimming speed; 

• Respiration rates and energy densities; and 

• Poor condition survival. 
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Knowing which parameters have relatively little effect on results is also important. Parameters 

driving reproductive success generally had relatively small effects. Of particular note are the 

small effects of the two superindividual parameters (Table 33). Low response to these parameters 

is reassuring, but users should re-analyze those effects before assuming that large 

superindividuals can be used with negligible effects at other sites. Superindividual parameter 

values interact with cell sizes and availability of habitat resources: larger superindividuals are 

expected to create more simulation artifacts and uncertainty when cells are small and when 

availability of food and cover for feeding and hiding are relatively low. 

Table 32. Sensitivity analysis results for global and reach habitat parameters. 

Parameter Value Range Scaled 

slope 

Unscaled 

slope 

Graph 

latitude 40 20% -133 -333 

 

light-correction 0.7 20% 124 311 

 

light-at-night 0.9 80% -70 -44 
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reach-drift-conc 5.9E-10 50% 3705 

(excluding 

lowest 

two 

values) 

3705 

 

reach-drift-regen-

distance 

1000 50% -916 -916 

 

reach-fish-pred-

min 

0.8 10% 553 2766 

 

reach-search-prod 5.0E-07 50% -262 -262 

 

reach-shading 0.7 20% 232 580 
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reach-shelter-

speed-frac 

0.3 40% 50 63 

 

reach-terr-pred-

min 

0.71 10% 1435 7176 

 

reach-light-turbid-

coef 

0.0017 20% -83 -207 

 

reach-light-turbid-

const 

0.0 Excluded because standard value is zero 

max-spawn-flow 4.0 50% -304 -304 

 

reach-shear-A 0.019 20% -184 -461 
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reach-shear-B 0.383 10% 51 255 

 

 

Table 33. Parameter sensitivity analysis results for trout parameters. 

Parameter Value Range Scaled 

slope 

Unscaled 

slope 

Graph 

trout-capture-R1 1.7 20% 900 2251 

 

trout-capture-R9 0.4 20% 365 911 

 

trout-cmax-A 0.628 50% 249 249 
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Parameter Value Range Scaled 

slope 

Unscaled 

slope 

Graph 

trout-cmax-B 0.7 20% 1048 2619 

 

trout-emerge-length-

mode, min, max (three 

parameters varied 

together) 

2.8 40% 335 419 

 

trout-energy-density 5900 20% -839 -2096 

 

trout-fitness-horizon 60 40% 372 465 

 

trout-fitness-length 16.9 30% 85 142 
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Parameter Value Range Scaled 

slope 

Unscaled 

slope 

Graph 

trout-light-exp -0.2 20% 177 442 

 

trout-light-min 0.5 40% 1712 2140 

 

trout-light-threshold 20 40% -368 -460 

 

trout-max-speed-A 2.8 20% 1075 2687 

 

trout-max-speed-B 21 10% 255 1277 
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Parameter Value Range Scaled 

slope 

Unscaled 

slope 

Graph 

trout-max-speed-C -0.0029 10% 66 332 

 

trout-max-speed-D 0.084 10% 919 4596 

 

trout-max-speed-E 0.37 10% 1007 5037 

 

trout-move-dist-A 50 50% 1614* 1614 

 

trout-move-dist-B 2 40% 1073 1341 
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Parameter Value Range Scaled 

slope 

Unscaled 

slope 

Graph 

trout-pisciv-length 15 20% 437 1094 

 

trout-react-dist-A 4 40% 1041 1301 

 

trout-react-dist-B 2 20% 1890 4726 

 

trout-resp-A 36 20% -314 -784 

 

trout-resp-B 0.783 10% -810 -4726 
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Parameter Value Range Scaled 

slope 

Unscaled 

slope 

Graph 

trout-resp-C 0.002 10% 71 356 

 

trout-resp-D 1.4 10% 181 906 

 

trout-search-area 20000 40% 100 124 

 

trout-spawn-egg-viability 0.8 40% 400 500 

 

trout-spawn-end-day 5/31 Varied 

±14 d 

(Not comparable to 

other parameters) 
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Parameter Value Range Scaled 

slope 

Unscaled 

slope 

Graph 

trout-spawn-fecund-exp 2.51 10% 123 617 

 

trout-spawn-fecund-mult 0.18 20% -34 -86 

 

trout-spawn-max-flow-

change 

0.2 20% -30 -75 

 

trout-spawn-max-temp 13 20% 0 -1 

 

trout-spawn-min-age 1 Varied 

0-3 y 

(Not comparable to 

other parameters) 
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Parameter Value Range Scaled 

slope 

Unscaled 

slope 

Graph 

trout-spawn-min-length 13 30% 231 384 

 

trout-spawn-min-temp 7 20% 183 457 

 

trout-spawn-prob 0.04 50% -81 -81 

 

trout-spawn-start-day 4/1 Varied 

±14 d 

(Not comparable to 

other parameters) 

 

trout-spawn-suitability-

tol 

0.1 80% 17 10 
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Parameter Value Range Scaled 

slope 

Unscaled 

slope 

Graph 

trout-spawn-wt-loss-

fraction 

0.2 40% -253 -317 

 

trout-superind-max-

length 

5 40% -105 -131 

 

trout-superind-max-rep 10 Varied 

1-52 by 

3 

(Not comparable to 

other parameters) 

 

trout-turbid-exp -0.116 20% 162 404 

 

trout-turbid-min 0.1 40% 117 146 
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Parameter Value Range Scaled 

slope 

Unscaled 

slope 

Graph 

trout-turbid-threshold 5 40% 1712 2140 

 

 

Table 34. Parameter sensitivity analysis results for trout survival parameters. 

Parameter Value Range Scaled 

slope 

Unscaled 

slope 

Graph 

mort-condition-S-at-K5 0.98 2% -652 -16289 

 

mort-fish-pred-D1 35 30% 62 103 

 

mort-fish-pred-D9 5 30% 110 183 
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Parameter Value Range Scaled 

slope 

Unscaled 

slope 

Graph 

mort-fish-pred-hiding-

factor 

0.7 30% 197 329 

 

mort-fish-pred-I1 50 50% -57 -57 

 

mort-fish-pred-I9 -50 50% -98 -98 

 

mort-fish-pred-L1 3 40% -197 -246 

 

mort-fish-pred-L9 6 40% -1532 

over 

the 

range 

0.45-

1.0 

-1915 
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Parameter Value Range Scaled 

slope 

Unscaled 

slope 

Graph 

mort-fish-pred-P1 5.00E-

06 

50% 335 335 

 

mort-fish-pred-P9 5.00E-

07 

50% 408 408 

 

mort-fish-pred-T1 6 30% -10 -16 

 

mort-fish-pred-T9 2 30% -14 -24 

 

mort-high-temp-T1 30 10% -43 -217 
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Parameter Value Range Scaled 

slope 

Unscaled 

slope 

Graph 

mort-high-temp-T9 25.8 10% -81 -404 

 

mort-high-velocity-V1 1.8 20% -287 -717 

 

mort-high-velocity-V9 1.4 20% -110 -275 

 

mort-strand-survival-

when-dry 

0.5 20% 227 566 

 

mort-terr-pred-D1 0 30% 173 288 
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Parameter Value Range Scaled 

slope 

Unscaled 

slope 

Graph 

mort-terr-pred-D9 140 30% -3085 -5142 

 

mort-terr-pred-H1 200 30% 781 1302 

 

mort-terr-pred-H9 -50 30% -773 -1288 

 

mort-terr-pred-hiding-

factor 

0.8 20% -244 -609 

 

mort-terr-pred-I1 50 50% 252 252 
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Parameter Value Range Scaled 

slope 

Unscaled 

slope 

Graph 

mort-terr-pred-I9 -10 50% -112 -112 

 

mort-terr-pred-L1 6 40% 647 809 

 

mort-terr-pred-L9 3 40% 531 664 

 

mort-terr-pred-V1 20 30% -180 -300 

 

mort-terr-pred-V9 100 30% -2494 -4157 
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Table 35. Parameter sensitivity analysis results for redd parameters. 

Parameter Value Range Scaled slope Unscaled slope Graph 

redd-area 1200 40% -20 -25 

 

redd-devel-A -0.00025 1% -61 -3075 

 

redd-devel-B 0.00134 1% 32 1607 

 

redd-devel-C 3.21E-05 0.1% -38 -19196 

 

mort-redd-
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Parameter Value Range Scaled slope Unscaled slope Graph 

mort-redd-

hi-temp-T1 

30 10% -70 -348 

 

mort-redd-

hi-temp-T9 

21 10% 37 184 

 

mort-redd-

lo-temp-T1 

-3 50% -236 -236 

 

mort-redd-

lo-temp-T9 

0 Varied -2 

to 2°C 

(Not comparable to other 

parameters) 

 

mort-redd-

scour-depth 

5 50% 12 12 
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Table 36. Parameters ranked by absolute value of scaled slope in the sensitivity analysis. 

Parameters near the top of this table can be assumed important in all applications; other 

parameters may have strong effects in particular applications. 

Parameter Scaled slope Unscaled slope 

reach-drift-conc 3705 3705 

mort-terr-pred-D9 -3085 -5142 

mort-terr-pred-V9 -2494 -4157 

trout-react-dist-B 1890 4726 

trout-light-min 1712 2140 

trout-move-dist-A 1614 1614 

mort-fish-pred-L9 -1532 -1915 

reach-terr-pred-min 1435 7176 

trout-max-speed-A 1075 2687 

trout-move-dist-B 1073 1341 

trout-cmax-B 1048 2619 

trout-react-dist-A 1041 1301 

trout-max-speed-E 1007 5037 

trout-max-speed-D 919 4596 

reach-drift-regen-distance -916 -916 

trout-capture-R1 900 2251 

trout-energy-density -839 -2096 

trout-resp-B -810 -4052 

mort-terr-pred-H1 781 1302 

mort-terr-pred-H9 -773 -1288 

mort-condition-S-at-K5 -652 -16289 
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Parameter Scaled slope Unscaled slope 

mort-terr-pred-L1 647 809 

trout-spawn-min-length 630 1049 

reach-fish-pred-min 553 2766 

mort-terr-pred-L9 531 664 

trout-pisciv-length 437 1094 

mort-fish-pred-P9 408 408 

trout-spawn-egg-viability 400 500 

trout-fitness-horizon 372 465 

trout-light-threshold -368 -460 

trout-capture-R9 365 911 

trout-emerge-length-mode 335 419 

mort-fish-pred-P1 335 335 

trout-resp-A -314 -784 

max-spawn-flow -304 -304 

mort-redd-lo-temp-T9 -296 -74 

mort-high-velocity-V1 -287 -717 

reach-search-prod -262 -262 

trout-max-speed-B 255 1277 

trout-spawn-wt-loss-fraction -253 -317 

mort-terr-pred-I1 252 252 

trout-cmax-A 249 249 

mort-terr-pred-hiding-factor -244 -609 

mort-redd-lo-temp-T1 -236 -236 



 

261 

 

Parameter Scaled slope Unscaled slope 

reach-shading 232 580 

mort-strand-survival-when-dry 227 566 

mort-fish-pred-hiding-factor 197 329 

mort-fish-pred-L1 -197 -246 

reach-shear-A -184 -461 

trout-spawn-min-temp 183 457 

trout-resp-D 181 906 

mort-terr-pred-V1 -180 -300 

trout-light-exp 177 442 

mort-terr-pred-D1 173 288 

trout-turbid-exp 162 404 

latitude -133 -333 

light-correction 124 311 

trout-spawn-fecund-exp 123 617 

trout-turbid-min 117 146 

mort-terr-pred-I9 -112 -112 

mort-high-velocity-V9 -110 -275 

mort-fish-pred-D9 110 183 

trout-superind-max-length -105 -131 

trout-search-area 100 124 

mort-fish-pred-I9 -98 -98 

reach-light-turbid-coef -83 -207 

trout-spawn-prob -81 -81 
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Parameter Scaled slope Unscaled slope 

mort-high-temp-T9 -81 -404 

trout-resp-C 71 356 

light-at-night -70 -44 

mort-redd-hi-temp-T1 -70 -348 

trout-max-speed-C 66 332 

mort-fish-pred-D1 62 103 

redd-devel-A -61 -3075 

mort-fish-pred-I1 -57 -57 

reach-shear-B 51 255 

reach-shelter-speed-frac 50 63 

mort-high-temp-T1 -43 -217 

trout-turbid-threshold -40 50 

redd-devel-C -38 -19196 

mort-redd-hi-temp-T9 37 184 

trout-spawn-fecund-mult -34 -86 

redd-devel-B 32 1607 

trout-spawn-max-flow-change -30 -75 

redd-area -20 -25 

mort-redd-dewater-surv 19 95 

trout-spawn-suitability-tol 17 10 

mort-fish-pred-T9 -14 -24 

mort-redd-scour-depth 12 12 

mort-fish-pred-T1 -10 -16 
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Parameter Scaled slope Unscaled slope 

trout-spawn-max-temp 0 1 

 

26.3 Sensitivity of primary predictions to initial conditions 
Sensitivity of results to initial conditions is a common concern with simulation models. Modelers 

often talk about how long to let a model “warm up”: how many of the first results of a simulation 

should be ignored because they remain strongly influenced by the initial state of the simulated 

population. 

To address this question, we analyzed the sensitivity of inSTREAM 7’s results to the initial 

population abundance. In seven scenarios, we varied the initial abundance of all ages of trout 

from 0.5 to 2.0 times the standard abundance, in steps of 0.25. We then simulated 10 years and 

examined how strongly the results at the end of each year were correlated to initial abundance. 

For replication, we repeated this experiment 5 times, each with a different shuffle of the water 

years (using the year shuffler described in Sect. 8.2). We conducted the experiment for two study 

sites: the small Little Jones Creek site used for parameter sensitivity experiments (Sect. 26.2), 

and the larger Clear Creek 3A site (the “RESTORED” site of Railsback et al. 2021). The Little 

Jones Creek site has a standard initial population of 212, 38, and 4 trout of ages 0, 1, and 2. The 

Clear Creek site’s standard initial population is 1500, 350, and 100 trout of ages 0, 1, and 2. We 

analyzed the abundance of age 1 and older trout. 

Results of this experiment varied strongly among replicates, but on average (Figure 69) they 

indicate that model results remain strongly affected by the assumed initial abundance through the 

first two simulated years, are only weakly affected by years 3-4, and are essentially independent 

of initial conditions by the fifth year. 

 

Figure 69. Results of the initial population sensitivity experiment. The Y axis indicates the mean 

correlation, over five year-shuffler replicates, of the abundance of age 1 and older trout in the 

simulated year versus the initial abundance. 
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Our general guidance is that inSTREAM results from the first two simulated years are likely to 

be strongly affected by initial conditions, while results after the fourth year are unlikely to be so 

affected. However, the persistence of initial condition effects can vary among model 

applications: sites where trout are assumed to spawn at older ages and survive longer are likely to 

have more “momentum” in population dynamics and take longer to be unaffected by initial 

conditions. 

26.4 Sensitivity of primary predictions to spatial resolution  
Our discussions of inSTREAM’s spatial resolution (Sect. 4.2.1) and habitat cell input (Sect. 

22.1) identify several ways that the spatial resolution can affect model results. The effect of cell 

size on results was directly evaluated by Butcher and Parrish (2006; also described in Sect. 

15.4.3 of Railsback et al. 2009). Butcher and Parrish used an earlier version (4.2) of inSTREAM 

that used rectangular habitat cells, and simply divided cells to make alternative habitat input 

ranging from few large cells to many small cells, with nothing else changed. In their study, 

making cells smaller than the initial resolution produced artifacts (presumably due to competition 

for the resources within a cell) that affected results, while making cells larger did not. This work 

confirms our guidance that cells should be no smaller than necessary to capture important spatial 

variation in habitat. 

We cannot provide specific guidance on cell size, because cell size interacts with other 

variables—especially those controlling food availability and superindividual size—in limiting 

how many fish of what sizes a cell can support. Unfortunately, there is no simple way to address 

this question via simulation experiments with inSTREAM 7. 

26.5 Robustness of management conclusions to parameter uncertainty 
A key issue in any modeling study is understanding how robust results are to modeling 

assumptions and inputs: how different would the results, conclusions, and decisions from the 

model be if the model used a different equation, or was calibrated differently, or used different 

input? Traditionally these questions have been thought of in terms of model sensitivity and 

uncertainty, but it is more productive to think of them in terms of robustness: how robust are the 

conclusions drawn from a modeling study to its details (see Sect. 9.7 of Grimm and Railsback 

2005; Grimm and Berger 2016)? This robustness question is especially important for complex 

models such as inSTREAM, but it cannot be answered without first answering several other 

questions: 

• Robustness of what? Are we interested in the robustness of the primary predictions of 

inSTREAM—the simulated trout population abundance, production, etc.—or of 

secondary predictions such as the predicted differences among scenarios or the predicted 

sensitivity of population status to variables such as instream flow or temperature? 

• Robustness to what? Are we interested in the robustness of results to equations and 

assumptions (e.g., which processes are included vs. ignored in inSTREAM), or to 

parameter values, or to input data? 

• In what context? The robustness of results from inSTREAM undoubtedly varies with the 

conditions simulated. For example, results may be insensitive to equations and 

parameters for temperature mortality when inSTREAM is applied to a site where 

temperatures never exceed 15ºC, but very sensitive to these assumptions at sites with 

higher temperatures.  
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Evaluating the robustness of study results to the basic modeling assumptions and equations of 

inSTREAM will usually be beyond the scope and capability of routine applications. Making such 

an evaluation would require identifying reasonable alternative assumptions, implementing them 

in the software, testing them, and then analyzing the results of the alternative assumptions. That 

kind of analysis certainly represents interesting and valuable research but is impractical for most 

studies. 

What kinds of robustness analyses are practical and valuable for routine applications of 

inSTREAM? For study designs involving comparison of several alternative scenarios or 

analyzing sensitivity of predicted trout populations to a small number of variables, it will often 

be practical to conduct additional model runs and examine how robust the most important results 

are to a few key inputs. Most important is determining whether and how the final ranking of 

management alternative scenarios changes as key inputs vary. (Drechsler et al. 2003 provide an 

example for a different kind of model.) These key inputs could include: 

• Values for a small number of the parameters identified in Sect. 26.2 as having the 

strongest effects on the primary predictions of inSTREAM. 

• Values of any additional parameters expected to be particularly important for the specific 

study, for example, parameters controlling sources of high mortality among fish and 

eggs. 

• Hydrologic and weather conditions: years with high vs. low base flows, more vs. fewer 

extreme flow events, warm vs. cool temperatures, etc. Rates of mortality among 

simulated fish and eggs can again be used to identify important inputs to evaluate.  

• The sequence of water years in the input (Sect. 8.2).  

Analyzing robustness to key parameter values is especially easy and valuable for illustrating how 

inSTREAM’s mechanisms make conclusions based on its results insensitive to calibration details 

and parameter uncertainty. It has the additional value of illustrating when there is less difference 

among management alternatives than indicated by inSTREAM’s initial results. We recommend 

the following parameter robustness analysis steps for inSTREAM applications that involve 

ranking of management alternatives or other discrete scenarios.  

1. Define the management alternative scenarios and identify 1-2 specific measures of 

predicted trout population benefits for ranking the scenarios. For example, the ranking 

measure could be the total biomass of adult trout on October 1 of simulation years 4-10; 

and, when relative abundance of multiple species is important, the fraction of adults of 

native vs. introduced species. 

2. Identify a small number (typically, 2-5) of inSTREAM parameters to examine. Normally 

these will be parameters used for calibration (e.g., reach-drift-conc, reach-terr-pred-

min; Sect. 24.3) because they are especially uncertain and important. But the robustness 

analysis could also use parameters especially relevant to a particular study. For example, 

Railsback et al. (2021) studied how the daily light cycle affected inSTREAM’s predicted 

population responses to flow, so they examined robustness to parameters that relate 

predation risk and food intake to light levels. 

3. Select 2-3 values of each parameter, over wide but realistic ranges. The number of 

parameters and parameter values must be small enough to make it feasible to execute one 

model run for each parameter combination and each scenario. The number of model runs 
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is S×VP, where S is the number of scenarios, V is the number of values per parameter and 

P is the number of parameters. When only two values are used per parameter, they should 

be at the lower and upper ends of the range of realistic values; with three values, a central 

value can be included. 

4. Execute model runs that use all combinations of all parameter values, for each scenario. 

The BehaviorSpace tool (Sect. 15) makes this easy. 

5. Evaluate the ranking measures for each model run. For each parameter value 

combination, rank the scenarios by the values of the ranking measures (Excel’s RANK 

function is useful for this). 

6. Display the distribution of ranks by scenario. Examine the variation in rankings and how 

they overlap across scenarios. Management scenarios that overlap in ranking can be 

considered less robustly different in predicted trout population effects. 

Railsback et al. (2021) illustrated this approach. They examined eight flow scenarios, referred to 

here simply as scenarios 1-8. They selected three values of two parameters, resulting in 72 model 

runs (S×VP = 8×32). Then, for each of the nine sets of parameter values, they ranked the flow 

scenarios from 1 to 8, with 8 being the scenario with highest simulated trout biomass and 1 the 

least. The rankings (Figure 70) indicate the robustness of inSTREAM’s results to uncertainty in 

the light parameters. Flow scenarios 1-2 consistently produced the lowest trout biomass, 

scenarios 3 and 8 were consistently the next two lowest, and scenario 6 almost always produced 

the most trout. The rank distributions of scenarios 4-7 overlapped broadly, indicating that the 

differences among those scenarios are not as robust, so the scenarios could be treated as having 

nearly equivalent benefits. 

 

Figure 70. Results of an example analysis of scenario rankings to parameter uncertainty, re-

drawn from Figure 5 of Railsback et al. (2021). Y values are “jittered” to make each symbol 

visible. 
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27 Validation of InSTREAM 

27.1 What is “validation”? 
Potential users of inSTREAM and its results, especially management decision-makers, are 

naturally concerned with validation: the extent to which inSTREAM’s ability to predict 

population responses has been tested against data. This concern is natural because, despite its 

20+ year history, inSTREAM can seem new and experimental compared to conventional models 

such as PHABSIM (Bovee et al. 1998). But questions about validation of inSTREAM also 

undoubtedly arise because it is clear that it can be tested in many ways; this is in sharp contrast 

to PHABSIM, which makes no directly testable predictions.  

Even though inSTREAM can make many testable predictions—e.g., about population 

abundance, relative abundance of multiple species, age class structure, and even behavior and 

spatial distributions of individuals—validation of such complex models is not straightforward for 

several reasons. First, traditional validation of primary results such as population predictions is 

not convincing unless the model’s internal mechanisms (e.g., habitat and activity selection in 

inSTREAM 7) have been tested successfully: a model could be calibrated to look successful at 

one site without having the right mechanisms to make it generally successful at many sites. 

Second, validation of models that make several kinds of specific predictions requires extensive 

and accurate data from the study site, for both model input and comparison to results. Collection 

of such data is expensive and not always feasible. Third, while inSTREAM is complex it is still a 

model, intentionally simplified in many ways; therefore, a real trout population can be affected 

by many processes and events that inSTREAM cannot predict. (We address these issues further 

below.) 

These challenges to validation of complex IBMs are well-known, and the generally accepted way 

of addressing them is to use a “weight-of-evidence” approach to validation (Grimm and 

Railsback 2005; Augusiak et al. 2014; Grimm et al. 2020). Instead of treating comparison of 

primary predictions to data as a necessary and sufficient test of model validity, the weight-of-

evidence approach looks at a wide range of evidence for model validity and usefulness. Chapter 

10 of Railsback and Harvey (2020) provides general guidance on the weight-of-evidence 

approach. For inSTREAM, this wide range of evidence (summarized below) includes simulation 

experiments that tested key submodels against observed patterns and controlled field 

experiments that tested predictions at the individual and population levels.  

Even with the extensive evaluation and validation done so far, validation of inSTREAM’s 

population predictions remains a legitimate concern, and we hope that future applications include 

validation studies as often as possible. To support such applications, the following two 

subsections provide a summary of completed validation and evaluation studies and guidance for 

future studies. 

27.2 Published validation studies 
Here we summarize inSTREAM evaluation and validation studies published through 2020. We 

have not yet had the opportunity to test predictions of population response to a major instream 

flow change, but these studies provide evidence of inSTREAM’s validity for that purpose. 
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Pattern-oriented validation of habitat and activity selection submodels. Throughout the 

evolution of inSTREAM, we have conducted simulation experiments that confirm its ability to 

produce realistic habitat and activity selection behaviors and their response to conditions such as 

food availability, predation risk, competition, and physical habitat. We focused on validating 

these behavior submodels because they represent the most important adaptive behavior and are 

the most innovative submodels. The validation studies (Railsback and Harvey 2002; Railsback et 

al. 2005, 2020) are discussed in sections 3.2.1 and 3.2.3. Each of these studies validated the 

submodels driving adaptive behavior by showing that they cause inSTREAM to reproduce 

observed patterns of response to a variety of factors. 

Pattern-oriented analysis of population-level predictions. The simulation experiments of 

Railsback et al. (2002) showed that an early version of inSTREAM could reproduce a variety of 

general patterns observed in real trout populations. These experiments are summarized in Sect. 

3.2.2. 

Field evaluation of feeding and growth submodels. Harvey and Railsback (2014) validated 

inSTREAM’s feeding and growth submodels by comparing predicted growth to observations of 

individual trout in a small, well-controlled field experiment. InSTREAM was calibrated to 

growth observed in a set of control habitat units and then used to predict growth in another set of 

habitat units with reduced flow. The growth predictions corresponded well with observed 

growth. This experiment also confirmed the importance of inSTREAM’s search feeding mode as 

an alternative to drift feeding: growth predictions were more accurate when both search and drift 

feeding were simulated, compared to drift feeding only. This study produced a second piece of 

evidence for inSTREAM’s validity: the drift food concentrations estimated by calibrating 

inSTREAM to observed growth matched concentrations measured at the study site. 

Independent validation of terrestrial predation survival parameter values. InSTREAM’s 

parameter controlling risk from terrestrial predators (reach-terr-pred-min in inSTREAM 7; Sect. 

9.18) has always been estimated only via calibration of the model to observed trout abundance, 

because predation risk is very difficult to observe and there has been no literature upon which to 

base parameter values. Typical values of the parameter for earlier versions of inSTREAM were 

in the range of 0.97 to 0.99. (Because it does not ignore risk during night, calibration of 

inSTREAM 7 typically produces lower values than these for reach-terr-pred-min; Railsback et 

al. 2021.) To provide an independent estimate of this parameter, Harvey and Nakamoto (2013) 

conducted an extensive study of predation on trout confined to the high-risk conditions that 

reach-terr-pred-min represents. Their observations yielded survival estimates (0.98-0.99) within 

the narrow range of those obtained via calibration. This experiment provides evidence of the 

realism of inSTREAM’s terrestrial predation submodel, which is among its most important (as 

indicated by the sensitivity analysis in Sect. 26.2). 

Validation of predicted population effects of flow diversion. Harvey et al. (2014) calibrated 

two earlier versions of inSTREAM—representing daytime only, and day and night—to a small 

stream site upstream of a water diversion, and then used the calibrated parameter values to 

predict trout abundance and size at a second site downstream of the diversion. The models 

predicted several population characteristics well; these included the difference in biomass 

between sites, seasonal patterns in growth (low growth in the summer dry season), and patterns 

in growth among individuals. Both versions of inSTREAM indicated that the lower abundance 
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downstream of the diversion was due in part to habitat differences and not only to reduced flow. 

(Subsequent to this study, a habitat improvement project was implemented downstream of the 

diversion; it led to much higher trout abundance.) 

An unplanned validation: effects of barriers on population size structure. We used 

inSTREAM to evaluate effects of barrier density on trout population persistence in a small 

watershed (Harvey and Railsback 2012). Among the model results were populations isolated 

upstream of diversions having higher survival among juveniles but fewer and smaller adults, as a 

result of the habitat selection, growth, and survival submodels. In a field study of the same issue, 

Letcher et al. (2007) found the same pattern of age and size structure differences above and 

below barriers but attributed it possibly to an evolutionary response. Comparison of the 

simulation results of Harvey and Railsback (2012) to the field observations of Letcher et al. 

(2007) indicates that inSTREAM’s submodels for growth, survival, and habitat selection 

together are capable of reproducing observed effects of barriers on key population 

characteristics, and that evolution is not always necessary to produce those effects. 

27.3 Guidance for site-specific validation 
We strongly encourage users of inSTREAM to conduct validation studies at their sites whenever 

feasible. In particular, applications to hydropower licensing that can support pre- and post-

licensing monitoring are valuable opportunities to test the model analyses and predictions used to 

support licensing decisions. Doing so is in the spirit of adaptive management as a process that 

includes testing, evaluating, and improving the models used for management decisions (Walters 

1986). Whether or not a validation study “proves” anything about inSTREAM’s predictive 

ability, it almost certainly will produce useful knowledge about the model and the system it is 

applied to.  

We base the following recommendations for validation studies on our experience with all 

versions of inSTREAM. Some of these recommendations also apply to field studies to collect 

calibration data. 

Predict responses to major changes or differences between sites. InSTREAM is intended to 

predict trout population responses to change, so if nothing changes the model cannot be tested. 

Several of our hoped-for validation opportunities evaporated because nothing changed; one 

example was a hydropower licensing case in which the recommendation from inSTREAM (and 

other studies) was to not increase flows. Our successes with validation have come when we 

could calibrate inSTREAM to one site and then use it to predict conditions at adjacent sites that 

differ substantially in flow or physical habitat. Predicting population response to a future major 

change in flow at the same site should be equally productive. The key point is that validation 

success requires two sites, or two time periods at the same site, that (a) are similar enough so an 

inSTREAM calibration to one can be assumed valid at the other, yet (b) different enough (in 

flow regime, channel shape, etc.) to produce trout population differences large enough to detect 

both in the model and in the field. Simply monitoring one undisturbed site has not proven useful 

for validation because the year-to-year variation in abundance at the site is not large enough to 

distinguish from the combination of field data uncertainty and the uncertainty and stochasticity 

in model results. 
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Test lower-level predictions in addition to abundance. Traditionally, validation of population 

models is focused on abundance. However, inSTREAM makes many more kinds of predictions 

than abundance, and modern monitoring technologies such as PIT tags make it feasible to test 

predictions about characteristics such as the age and size structure of the population, growth and 

survival rates, and habitat selection. Attempting to validate lower-level predictions often helps 

understand why model predictions do or do not resemble observed population responses. 

Be aware of data limitations and be sure that data are comparable to model results. Model 

validation studies tend to focus on uncertainties and errors in the model without adequate 

consideration of uncertainties and error in the field data. Data uncertainty and precision are one 

concern: we need to know the uncertainty or observation error in field measurements of trout 

abundance before we can test how well model predictions match those measurements. More 

precise field observations allow more rigorous model tests.  

Comparability of field observations and model results are a second concern, especially with 

inSTREAM 7, because this model predicts how many trout are actively feeding versus hiding 

during each phase of the daily light cycle. Counts of trout feeding during daytime, e.g., from 

standard snorkel surveys, are therefore not comparable to inSTREAM abundance output. Ideally, 

observations of abundance will rely on methods that better count all trout. Censusing trout during 

both day and night is certainly better than daytime only, but even counting active trout 

throughout a 24-hour cycle has the problem that the same individuals may feed during several 

phases: it is not safe to assume that trout feeding during night are not also feeding during day or 

dusk.  

We do not recommend attempting validation (or calibration) of inSTREAM 7 by comparing its 

predicted abundance of trout feeding in daytime to daytime field observations. The number of 

trout predicted to be feeding in any particular light phase is one of inSTREAM’s most uncertain 

results. Whether any simulated individual feeds or hides at any time is a complex prediction 

sensitive to a number of inputs and parameters; and multiple feeding patterns can provide almost 

equal fitness (Railsback et al. 2020). It does not appear that inSTREAM 7 needs to predict the 

percentage of fish feeding at different times of day accurately to make useful population 

predictions. 

Comparability of uncertainty and variability measures is another issue that demands caution. 

Field census methods such as multiple-pass electrofishing and mark-recapture can produce 

confidence intervals on abundance estimates. InSTREAM also produces uncertainty measures, 

especially the variability among replicate simulations (Sect. 25.1). It can be informative for 

validation to see if model-predicted abundance is within the confidence limits on field-observed 

abundance, but the uncertainty of model results and that of field observations are not truly 

comparable. InSTREAM results have no measurement error (the output reports simulation 

results with 100% accuracy) so estimates of measurement uncertainty from field observations do 

not correspond with any simulation results. Conversely, replicates in inSTREAM represent only 

the effects of the model’s stochasticity, which has no analog in nature, so variability among 

replicates is not comparable to any field observations. 



 

271 

 

The overall recommendation is to be very careful in designing field studies and statistical 

analyses to ensure that any comparisons between field observations and model results use 

legitimately comparable variables or measures. 

Limit expectations and expect differences that are not due to “error”. Keep in mind that 

inSTREAM is a model, which means it is intentionally simplified and therefore cannot predict 

everything that can happen in nature. Validation studies must expect real trout populations to be 

affected by events and processes that are absent or highly simplified in inSTREAM, so the model 

will not always predict observations well. Examples of such events and processes that we suspect 

have affected our field populations include: episodic predation by otters, angler harvest, and 

acute influxes of fine sediment (e.g., following forest fires) that smothered redds and habitat. 

Such events can keep model predictions from matching data but do not make inSTREAM 

“wrong”—models cannot predict effects of events and processes they do not represent. 

Ideally, validation studies are long enough to capture sufficient observations unaffected by 

unmodeled events. Study plans can incorporate the likelihood that not all years will produce data 

useful for testing the model. However, if events and processes not included in inSTREAM 

happen frequently enough to dominate population dynamics, then inSTREAM is not—unless 

modified—a useful model for the site (and neither is any other approach that assumes population 

dynamics are driven only by flow, temperature, turbidity, and physical habitat).  

Plan to turn validation failures into opportunities for learning and improvement. A failure 

of inSTREAM to predict observed trout population dynamics can indicate that the model’s 

representation of some process important at the site is too simple, wrong, or completely lacking. 

In that case, the ideal response is to learn what is inadequate or lacking, and improve inSTREAM 

by fixing it. In a simulation experiment not originally intended as a validation study, we found 

that inSTREAM predicted trout population extinction under elevated turbidity regimes that did 

not cause extinction of a real trout population (Harvey and Railsback 2009). This model “failure” 

indicated that inSTREAM lacked a mechanism that real trout use to feed in high turbidity. 

Laboratory experiments indicated that this mechanism was feeding close to the bottom and using 

non-visual senses to detect prey (Harvey and White 2008), which can easily be represented via 

inSTREAM’s search feeding submodel. 

This example illustrates how a particular process in inSTREAM can be especially important at 

particular study sites, so a simple submodel that suffices at other sites becomes inadequate. We 

encourage users to treat validation not as a test of whether inSTREAM is right or wrong, but 

instead as a way of determining what parts of it need improvement for their specific application. 
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